IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.13966.html
   My bibliography  Save this paper

State space decomposition and classification of term structure shapes in the two-factor Vasicek model

Author

Listed:
  • Martin Keller-Ressel
  • Felix Sachse

Abstract

Using the concept of envelopes we show how to divide the state space $\RR^2$ of the two-factor Vasicek model into regions of identical term-structure shape. We develop a formula for determining the shapes utilizing winding numbers and give a nearly complete classification of the parameter space regarding the occurring shapes.

Suggested Citation

  • Martin Keller-Ressel & Felix Sachse, 2023. "State space decomposition and classification of term structure shapes in the two-factor Vasicek model," Papers 2303.13966, arXiv.org.
  • Handle: RePEc:arx:papers:2303.13966
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.13966
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Martin Keller-Ressel & Thomas Steiner, 2008. "Yield curve shapes and the asymptotic short rate distribution in affine one-factor models," Finance and Stochastics, Springer, vol. 12(2), pages 149-172, April.
    4. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    5. Martin Keller-Ressel, 2018. "Correction to: Yield curve shapes and the asymptotic short rate distribution in affine one-factor models," Finance and Stochastics, Springer, vol. 22(2), pages 503-510, April.
    6. Martin Keller-Ressel, 2017. "Erratum to: `Yield curve shapes and the asymptotic short rate distribution in affine one-factor models'," Papers 1711.00737, arXiv.org, revised Feb 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Keller-Ressel & Felix Sachse, 2024. "Term structure shapes and their consistent dynamics in the Svensson family," Papers 2410.08808, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Keller-Ressel, 2019. "The classification of term structure shapes in the two-factor Vasicek model -- a total positivity approach," Papers 1908.04667, arXiv.org, revised Jun 2021.
    2. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    3. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    4. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    5. Levendorskii, Sergei, 2004. "Consistency conditions for affine term structure models," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 225-261, February.
    6. Peter Carr & Liuren Wu, 2023. "Decomposing Long Bond Returns: A Decentralized Theory," Review of Finance, European Finance Association, vol. 27(3), pages 997-1026.
    7. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    8. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    9. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    10. Hong, Zhiwu & Niu, Linlin & Zhang, Chen, 2022. "Affine arbitrage-free yield net models with application to the euro debt crisis," Journal of Econometrics, Elsevier, vol. 230(1), pages 201-220.
    11. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    12. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.
    13. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    14. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    15. Carmen Gloria Silva, 2010. "Forward premium puzzle and term structure of interest rates: the case of New Zealand," Working Papers Central Bank of Chile 570, Central Bank of Chile.
    16. Januj Juneja, 2015. "An evaluation of alternative methods used in the estimation of Gaussian term structure models," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 1-24, January.
    17. Kaya, Huseyin, 2013. "Forecasting the yield curve and the role of macroeconomic information in Turkey," Economic Modelling, Elsevier, vol. 33(C), pages 1-7.
    18. Abdelkoddousse Ahdida & Aur'elien Alfonsi & Ernesto Palidda, 2014. "Smile with the Gaussian term structure model," Papers 1412.7412, arXiv.org, revised Nov 2015.
    19. Hamilton, James D. & Wu, Jing Cynthia, 2012. "Identification and estimation of Gaussian affine term structure models," Journal of Econometrics, Elsevier, vol. 168(2), pages 315-331.
    20. Juneja, Januj, 2014. "Term structure estimation in the presence of autocorrelation," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 119-129.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.13966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.