IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v22y2018i2d10.1007_s00780-018-0359-5.html
   My bibliography  Save this article

Correction to: Yield curve shapes and the asymptotic short rate distribution in affine one-factor models

Author

Listed:
  • Martin Keller-Ressel

    (TU Dresden)

Abstract

Correction to: Finance Stoch. (2008) 12: 149–172 https://doi.org/10.1007/s00780-007-0059-z I should like to thank Ralf Korn for alerting me to an error in the original paper [2]. The error concerns the threshold at which the yield curve in an affine short rate model changes from normal (strictly increasing) to humped (endowed with a single maximum). In particular, it is not true that this threshold is the same for the forward curve and for the yield curve, as claimed in [2]. Below, the correct mathematical expression for the threshold is given, supplemented with a self-contained and corrected proof.

Suggested Citation

  • Martin Keller-Ressel, 2018. "Correction to: Yield curve shapes and the asymptotic short rate distribution in affine one-factor models," Finance and Stochastics, Springer, vol. 22(2), pages 503-510, April.
  • Handle: RePEc:spr:finsto:v:22:y:2018:i:2:d:10.1007_s00780-018-0359-5
    DOI: 10.1007/s00780-018-0359-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-018-0359-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-018-0359-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Keller-Ressel & Felix Sachse, 2023. "State space decomposition and classification of term structure shapes in the two-factor Vasicek model," Papers 2303.13966, arXiv.org.
    2. Martin Keller-Ressel, 2019. "The classification of term structure shapes in the two-factor Vasicek model -- a total positivity approach," Papers 1908.04667, arXiv.org, revised Jun 2021.
    3. Martin Keller-Ressel & Felix Sachse, 2024. "Term structure shapes and their consistent dynamics in the Svensson family," Papers 2410.08808, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:22:y:2018:i:2:d:10.1007_s00780-018-0359-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.