IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.09147.html
   My bibliography  Save this paper

Economic Consequences of Online Tracking Restrictions: Evidence from Cookies

Author

Listed:
  • Klaus M. Miller
  • Bernd Skiera

Abstract

In recent years, European regulators have debated restricting the time an online tracker can track a user to protect consumer privacy better. Despite the significance of these debates, there has been a noticeable absence of any comprehensive cost-benefit analysis. This article fills this gap on the cost side by suggesting an approach to estimate the economic consequences of lifetime restrictions on cookies for publishers. The empirical study on cookies of 54,127 users who received 128 million ad impressions over 2.5 years yields an average cookie lifetime of 279 days, with an average value of EUR 2.52 per cookie. Only 13% of all cookies increase their daily value over time, but their average value is about four times larger than the average value of all cookies. Restricting cookies lifetime to one year (two years) decreases their lifetime value by 25% (19%), which represents a decrease in the value of all cookies of 9% (5%). In light of the EUR 10.60 billion cookie-based display ad revenue in Europe, such restrictions would endanger EUR 904 million (EUR 576 million) annually, equivalent to EUR 2.08 (EUR 1.33) per EU internet user. The article discusses these results' marketing strategy challenges and opportunities for advertisers and publishers.

Suggested Citation

  • Klaus M. Miller & Bernd Skiera, 2023. "Economic Consequences of Online Tracking Restrictions: Evidence from Cookies," Papers 2303.09147, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2303.09147
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.09147
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nico Neumann & Catherine E. Tucker & Timothy Whitfield, 2019. "Frontiers: How Effective Is Third-Party Consumer Profiling? Evidence from Field Studies," Marketing Science, INFORMS, vol. 38(6), pages 918-926, November.
    2. Garrett A. Johnson & Scott K. Shriver & Shaoyin Du, 2020. "Consumer Privacy Choice in Online Advertising: Who Opts Out and at What Cost to Industry?," Marketing Science, INFORMS, vol. 39(1), pages 33-51, January.
    3. Avi Goldfarb & Catherine Tucker, 2011. "Online Display Advertising: Targeting and Obtrusiveness," Marketing Science, INFORMS, vol. 30(3), pages 389-404, 05-06.
    4. Avi Goldfarb & Catherine E. Tucker, 2011. "Privacy Regulation and Online Advertising," Management Science, INFORMS, vol. 57(1), pages 57-71, January.
    5. Benjamin Shiller & Joel Waldfogel & Johnny Ryan, 2018. "The effect of ad blocking on website traffic and quality," RAND Journal of Economics, RAND Corporation, vol. 49(1), pages 43-63, March.
    6. Omid Rafieian & Hema Yoganarasimhan, 2021. "Targeting and Privacy in Mobile Advertising," Marketing Science, INFORMS, vol. 40(2), pages 193-218, March.
    7. Avi Goldfarb & Catherine Tucker, 2011. "Rejoinder--Implications of "Online Display Advertising: Targeting and Obtrusiveness"," Marketing Science, INFORMS, vol. 30(3), pages 413-415, 05-06.
    8. Kakatkar, Chinmay & Spann, Martin, 2019. "Marketing analytics using anonymized and fragmented tracking data," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 117-136.
    9. Kakatkar, Chinmay & Spann, Martin, 2019. "Marketing analytics using anonymized and fragmented tracking data," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 117-136.
    10. Alexander Bleier & Maik Eisenbeiss, 2015. "Personalized Online Advertising Effectiveness: The Interplay of What, When, and Where," Marketing Science, INFORMS, vol. 34(5), pages 669-688, September.
    11. Simon Board, 2009. "Revealing information in auctions: the allocation effect," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(1), pages 125-135, January.
    12. Bleier, Alexander & Goldfarb, Avi & Tucker, Catherine, 2020. "Consumer privacy and the future of data-based innovation and marketing," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 466-480.
    13. Christopher A. Summers & Robert W. Smith & Rebecca Walker Reczek, 2016. "An Audience of One: Behaviorally Targeted Ads as Implied Social Labels," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 43(1), pages 156-178.
    14. Jonathan Levin & Paul Milgrom, 2010. "Online Advertising: Heterogeneity and Conflation in Market Design," American Economic Review, American Economic Association, vol. 100(2), pages 603-607, May.
    15. Schneider, Matthew J. & Jagpal, Sharan & Gupta, Sachin & Li, Shaobo & Yu, Yan, 2017. "Protecting customer privacy when marketing with second-party data," International Journal of Research in Marketing, Elsevier, vol. 34(3), pages 593-603.
    16. Beke, Frank T. & Eggers, Felix & Verhoef, Peter C. & Wieringa, Jaap E., 2022. "Consumers’ privacy calculus: The PRICAL index development and validation," International Journal of Research in Marketing, Elsevier, vol. 39(1), pages 20-41.
    17. repec:nbr:nberch:14785 is not listed on IDEAS
    18. Tesary Lin & Sanjog Misra, 2022. "Frontiers: The Identity Fragmentation Bias," Marketing Science, INFORMS, vol. 41(3), pages 433-440, May.
    19. Alfaro, Carlos A. & Lin, Jephian C.-H., 2019. "Critical ideals, minimum rank and zero forcing number," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 305-313.
    20. Randall Lewis & David Reiley, 2014. "Online ads and offline sales: measuring the effect of retail advertising via a controlled experiment on Yahoo!," Quantitative Marketing and Economics (QME), Springer, vol. 12(3), pages 235-266, September.
    21. Jenny Doorn & Janny Hoekstra, 2013. "Customization of online advertising: The role of intrusiveness," Marketing Letters, Springer, vol. 24(4), pages 339-351, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garrett Johnson & Julian Runge & Eric Seufert, 2022. "Privacy-Centric Digital Advertising: Implications for Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 9(1), pages 49-54, June.
    2. Nico Neumann & Catherine E. Tucker & Kumar Subramanyam & John Marshall, 2023. "Is first- or third-party audience data more effective for reaching the ‘right’ customers? The case of IT decision-makers," Quantitative Marketing and Economics (QME), Springer, vol. 21(4), pages 519-571, December.
    3. David A. Schweidel & Yakov Bart & J. Jeffrey Inman & Andrew T. Stephen & Barak Libai & Michelle Andrews & Ana Babić Rosario & Inyoung Chae & Zoey Chen & Daniella Kupor & Chiara Longoni & Felipe Thomaz, 2022. "How consumer digital signals are reshaping the customer journey," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1257-1276, November.
    4. Min Tian & Paul R. Hoban & Neeraj Arora, 2024. "What Cookie-Based Advertising Effectiveness Fails to Measure," Marketing Science, INFORMS, vol. 43(2), pages 407-418, March.
    5. Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.
    6. Bleier, Alexander & Goldfarb, Avi & Tucker, Catherine, 2020. "Consumer privacy and the future of data-based innovation and marketing," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 466-480.
    7. K. Sudhir & Seung Yoon Lee & Subroto Roy, 2021. "Lookalike Targeting on Others' Journeys: Brand Versus Performance Marketing," Cowles Foundation Discussion Papers 2302, Cowles Foundation for Research in Economics, Yale University.
    8. Rene Laub & Klaus M. Miller & Bernd Skiera, 2023. "The Economic Value of User Tracking for Publishers," Papers 2303.10906, arXiv.org, revised Apr 2024.
    9. Shun-Yang Lee & Julian Runge & Daniel Yoo & Yakov Bart & Anett Gyurak & J. W. Schneider, 2023. "COVID-19 Demand Shocks Revisited: Did Advertising Technology Help Mitigate Adverse Consequences for Small and Midsize Businesses?," Papers 2307.09035, arXiv.org, revised Jan 2024.
    10. Randall Lewis & Dan Nguyen, 2015. "Display advertising’s competitive spillovers to consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 13(2), pages 93-115, June.
    11. Bayer, Emanuel & Srinivasan, Shuba & Riedl, Edward J. & Skiera, Bernd, 2020. "The impact of online display advertising and paid search advertising relative to offline advertising on firm performance and firm value," International Journal of Research in Marketing, Elsevier, vol. 37(4), pages 789-804.
    12. Andre Veiga & Tommaso Valletti, 2020. "Attention, recall and purchase: Experimental evidence on online news and advertising," Working Papers 20-15, NET Institute.
    13. Zhuo, Ran & Huffaker, Bradley & claffy, kc & Greenstein, Shane, 2021. "The impact of the General Data Protection Regulation on internet interconnection," Telecommunications Policy, Elsevier, vol. 45(2).
    14. Arnold, René & Marcus, J. Scott & Petropoulos, Georgios & Schneider, Anna, 2018. "Is data the new oil? Diminishing returns to scale," 29th European Regional ITS Conference, Trento 2018 184927, International Telecommunications Society (ITS).
    15. Anna D’Annunzio & Antonio Russo, 2020. "Ad Networks and Consumer Tracking," Management Science, INFORMS, vol. 66(11), pages 5040-5058, November.
    16. Anna D’Annunzio & Antonio Russo, 2024. "Intermediaries in the Online Advertising Market," Marketing Science, INFORMS, vol. 43(1), pages 33-53, January.
    17. Duan, Yongrui & Liu, Peng & Feng, Yixuan, 2022. "Pricing strategies of two-sided platforms considering privacy concerns," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    18. Jin, Ginger Zhe & Wagman, Liad, 2021. "Big data at the crossroads of antitrust and consumer protection," Information Economics and Policy, Elsevier, vol. 54(C).
    19. K. Sudhir & Seung Yoon Lee & Subroto Roy, 2021. "Lookalike Targeting on Others' Journeys: Brand Versus Performance Marketing," Cowles Foundation Discussion Papers 2302R, Cowles Foundation for Research in Economics, Yale University, revised Jun 2022.
    20. Xiang Hui & Meng Liu & Tat Chan, 2023. "Targeted incentives, broad impacts: Evidence from an E-commerce platform," Quantitative Marketing and Economics (QME), Springer, vol. 21(4), pages 493-517, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.09147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.