IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.01909.html
   My bibliography  Save this paper

Finding the Optimal Currency Composition of Foreign Exchange Reserves with a Quantum Computer

Author

Listed:
  • Martin Vesely

Abstract

Portfolio optimization is an inseparable part of strategic asset allocation at the Czech National Bank. Quantum computing is a new technology offering algorithms for that problem. The capabilities and limitations of quantum computers with regard to portfolio optimization should therefore be investigated. In this paper, we focus on applications of quantum algorithms to dynamic portfolio optimization based on the Markowitz model. In particular, we compare algorithms for universal gate-based quantum computers (the QAOA, the VQE and Grover adaptive search), single-purpose quantum annealers, the classical exact branch and bound solver and classical heuristic algorithms (simulated annealing and genetic optimization). To run the quantum algorithms we use the IBM Quantum\textsuperscript{TM} gate-based quantum computer. We also employ the quantum annealer offered by D-Wave. We demonstrate portfolio optimization on finding the optimal currency composition of the CNB's FX reserves. A secondary goal of the paper is to provide staff of central banks and other financial market regulators with literature on quantum optimization algorithms, because financial firms are active in finding possible applications of quantum computing.

Suggested Citation

  • Martin Vesely, 2023. "Finding the Optimal Currency Composition of Foreign Exchange Reserves with a Quantum Computer," Papers 2303.01909, arXiv.org.
  • Handle: RePEc:arx:papers:2303.01909
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.01909
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    2. Samuel Palmer & Konstantinos Karagiannis & Adam Florence & Asier Rodriguez & Roman Orus & Harish Naik & Samuel Mugel, 2022. "Financial Index Tracking via Quantum Computing with Cardinality Constraints," Papers 2208.11380, arXiv.org.
    3. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    4. Martin Vesel'y, 2022. "Application of Quantum Computers in Foreign Exchange Reserves Management," Papers 2203.15716, arXiv.org.
    5. Martin Vesely, 2022. "Application of Quantum Computers in Foreign Exchange Reserves Management," Working Papers 2022/2, Czech National Bank.
    6. Gili Rosenberg & Poya Haghnegahdar & Phil Goddard & Peter Carr & Kesheng Wu & Marcos L'opez de Prado, 2015. "Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer," Papers 1508.06182, arXiv.org, revised Aug 2016.
    7. John D. C. Little & Katta G. Murty & Dura W. Sweeney & Caroline Karel, 1963. "An Algorithm for the Traveling Salesman Problem," Operations Research, INFORMS, vol. 11(6), pages 972-989, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    2. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    3. Martin Vesely, 2023. "Finding the Optimal Currency Composition of Foreign Exchange Reserves with a Quantum Computer," Working Papers 2023/1, Czech National Bank.
    4. José Berenguel & L. Casado & I. García & Eligius Hendrix, 2013. "On estimating workload in interval branch-and-bound global optimization algorithms," Journal of Global Optimization, Springer, vol. 56(3), pages 821-844, July.
    5. Byron Tasseff & Tameem Albash & Zachary Morrell & Marc Vuffray & Andrey Y. Lokhov & Sidhant Misra & Carleton Coffrin, 2024. "On the emerging potential of quantum annealing hardware for combinatorial optimization," Journal of Heuristics, Springer, vol. 30(5), pages 325-358, December.
    6. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    7. Takayuki Sakuma, 2020. "Application of deep quantum neural networks to finance," Papers 2011.07319, arXiv.org, revised May 2022.
    8. Joaquín Antonio Pacheco Bonrostro, 1995. "Problemas de rutas con carga y descarga en sistemas lifo: soluciones exactas," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 3, pages 69-86, Junio.
    9. Aufenanger, Tobias, 2018. "Treatment allocation for linear models," FAU Discussion Papers in Economics 14/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2018.
    10. Tomáš Režnar & Jan Martinovič & Kateřina Slaninová & Ekaterina Grakova & Vít Vondrák, 2017. "Probabilistic time-dependent vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 545-560, September.
    11. Bogna MRÓWCZYŃSKA, 2015. "Multicriteria vehicle routing problem solved by artificial immune system," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 10(3), pages 141-152, September.
    12. Samuel Fern'andez-Lorenzo & Diego Porras & Juan Jos'e Garc'ia-Ripoll, 2020. "Hybrid quantum-classical optimization for financial index tracking," Papers 2008.12050, arXiv.org, revised Oct 2021.
    13. Michele Samorani & Yang Wang & Yang Wang & Zhipeng Lv & Fred Glover, 2019. "Clustering-driven evolutionary algorithms: an application of path relinking to the quadratic unconstrained binary optimization problem," Journal of Heuristics, Springer, vol. 25(4), pages 629-642, October.
    14. Xiaoyuan Liu & Hayato Ushijima-Mwesigwa & Avradip Mandal & Sarvagya Upadhyay & Ilya Safro & Arnab Roy, 2022. "Leveraging special-purpose hardware for local search heuristics," Computational Optimization and Applications, Springer, vol. 82(1), pages 1-29, May.
    15. Bahram Alidaee & Haibo Wang, 2017. "A note on heuristic approach based on UBQP formulation of the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 102-110, January.
    16. Michael Windham & J. Hutchinson & Shizuhiko Nishisato & Ludovic Lebart & George Furnas & Richard Dubes & Frank Critchley & A. Gordon & Fionn Murtagh & Ulf Bockenholt & Philip Hopke & Daniel Wartenberg, 1988. "Book reviews," Journal of Classification, Springer;The Classification Society, vol. 5(1), pages 105-154, March.
    17. Nikolakopoulos, Athanassios & Sarimveis, Haralambos, 2007. "A threshold accepting heuristic with intense local search for the solution of special instances of the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1911-1929, March.
    18. Schulz, Arne & Pfeiffer, Christian, 2024. "Using fixed paths to improve branch-and-cut algorithms for precedence-constrained routing problems," European Journal of Operational Research, Elsevier, vol. 312(2), pages 456-472.
    19. Zhang Yang & Jiacheng Li & Lei Li, 2020. "Time-Dependent Theme Park Routing Problem by Partheno-Genetic Algorithm," Mathematics, MDPI, vol. 8(12), pages 1-20, December.
    20. Fred Glover & Jin-Kao Hao, 2016. "f-Flip strategies for unconstrained binary quadratic programming," Annals of Operations Research, Springer, vol. 238(1), pages 651-657, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.01909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.