IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.00452.html
   My bibliography  Save this paper

f-Betas and Portfolio Optimization with f-Divergence induced Risk Measures

Author

Listed:
  • Rui Ding

Abstract

In this paper, we build on using the class of f-divergence induced coherent risk measures for portfolio optimization and derive its necessary optimality conditions formulated in CAPM format. We derive a new f-Beta similar to the Standard Betas and also extended it to previous works in Drawdown Betas. The f-Beta evaluates portfolio performance under an optimally perturbed market probability measure, and this family of Beta metrics gives various degrees of flexibility and interpretability. We conduct numerical experiments using selected stocks against a chosen S\&P 500 market index as the optimal portfolio to demonstrate the new perspectives provided by Hellinger-Beta as compared with Standard Beta and Drawdown Betas. In our experiments, the squared Hellinger distance is chosen to be the particular choice of the f-divergence function in the f-divergence induced risk measures and f-Betas. We calculate Hellinger-Beta metrics based on deviation measures and further extend this approach to calculate Hellinger-Betas based on drawdown measures, resulting in another new metric which is termed Hellinger-Drawdown Beta. We compare the resulting Hellinger-Beta values under various choices of the risk aversion parameter to study their sensitivity to increasing stress levels.

Suggested Citation

  • Rui Ding, 2023. "f-Betas and Portfolio Optimization with f-Divergence induced Risk Measures," Papers 2302.00452, arXiv.org, revised May 2023.
  • Handle: RePEc:arx:papers:2302.00452
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.00452
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Dommel & Alois Pichler, 2020. "Convex Risk Measures based on Divergence," Papers 2003.07648, arXiv.org, revised Mar 2020.
    2. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    3. Mohammad Reza Tavakoli Baghdadabad & Fauzias Mat Nor & Izani Ibrahim, 2013. "Mean-drawdown risk behavior: drawdown risk and capital asset pricing," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(sup1), pages 447-469, June.
    4. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.
    5. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    6. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    7. Rui Ding & Stan Uryasev, 2020. "CoCDaR and mCoCDaR: New Approach for Measurement of Systemic Risk Contributions," JRFM, MDPI, vol. 13(11), pages 1-18, November.
    8. Matteo Rossi, 2016. "The capital asset pricing model: a critical literature review," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 18(5), pages 604-617.
    9. Don U.A. Galagedera, 2007. "A review of capital asset pricing models," Managerial Finance, Emerald Group Publishing, vol. 33(10), pages 821-832, September.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Documentos de Trabajo del ICAE 2015-19, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2014. "European Market Portfolio Diversifcation Strategies across the GFC," Working Papers in Economics 14/25, University of Canterbury, Department of Economics and Finance.
    3. David E. Allen & Michael McAleer & Shelton Peiris & Abhay K. Singh, 2014. "Hedge Fund Portfolio Diversification Strategies Across the GFC," Working Papers in Economics 14/27, University of Canterbury, Department of Economics and Finance.
    4. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2016. "Down-Side Risk Metrics as Portfolio Diversification Strategies across the Global Financial Crisis," JRFM, MDPI, vol. 9(2), pages 1-18, June.
    5. Stanislaus Maier-Paape & Qiji Jim Zhu, 2018. "A General Framework for Portfolio Theory. Part II: Drawdown Risk Measures," Risks, MDPI, vol. 6(3), pages 1-31, August.
    6. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
    7. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    8. Rui Ding & Stan Uryasev, 2020. "CoCDaR and mCoCDaR: New Approach for Measurement of Systemic Risk Contributions," JRFM, MDPI, vol. 13(11), pages 1-18, November.
    9. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, Michael, 2006. "Master funds in portfolio analysis with general deviation measures," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 743-778, February.
    10. Lehlohonolo Letho & Grieve Chelwa & Abdul Latif Alhassan, 2022. "Cryptocurrencies and portfolio diversification in an emerging market," China Finance Review International, Emerald Group Publishing Limited, vol. 12(1), pages 20-50, January.
    11. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    12. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    13. Liu, Congzheng & Zhu, Wenqi, 2024. "Newsvendor conditional value-at-risk minimisation: A feature-based approach under adaptive data selection," European Journal of Operational Research, Elsevier, vol. 313(2), pages 548-564.
    14. Duc Hong Vo, 2021. "Portfolio Optimization and Diversification in China: Policy Implications for Vietnam and Other Emerging Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(1), pages 223-238, January.
    15. Jaehyung Choi & Hyangju Kim & Young Shin Kim, 2021. "Diversified reward-risk parity in portfolio construction," Papers 2106.09055, arXiv.org, revised Sep 2022.
    16. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    17. Stanislaus Maier-Paape & Andreas Platen & Qiji Jim Zhu, 2019. "A General Framework for Portfolio Theory. Part III: Multi-Period Markets and Modular Approach," Risks, MDPI, vol. 7(2), pages 1-31, June.
    18. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    19. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    20. BALTES Nicolae & DRAGOE Alexandra-Gabriela-Maria, 2015. "Study Regarding The Markowitz Model Of Portfolio Selection," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 67(Supplemen), pages 195-206, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.00452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.