IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v57y2023i3d10.1007_s11135-022-01463-0.html
   My bibliography  Save this article

A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies

Author

Listed:
  • Pawan Kumar Singh

    (Thapar Institute of Engineering and Technology)

  • Alok Kumar Pandey

    (Banaras Hindu University)

  • S. C. Bose

    (Thapar Institute of Engineering and Technology)

Abstract

The current study uses the grey forecasting model, EGM (1, 1, α, θ), a generalized form of the classical, even form of grey forecasting approach, to forecast the closing price of Bitcoin (BTC), Bionic (BNC), Cardano (ADA), Dogecoin (DOGE), Ethereum (ETH), XRP (XRP) of cryptocurrencies based on the data from September 19, 2021, to September 29, 2021. The forecast was generated for September 30, 2021–October 07, 2021. Study revealed that the generalized model’s forecast accuracy is generally better than that of the classical model. The results are also compared with Linear Regression and Exponential Regression. This superiority results from using real past data in long-term forecasting, while the iterative forecasting approach uses the predicted values. Since forecast values are important in guiding future investments, decision-makers must consider various forecasting methods and select the best forecast performance after analyzing the comparative performance.

Suggested Citation

  • Pawan Kumar Singh & Alok Kumar Pandey & S. C. Bose, 2023. "A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2429-2446, June.
  • Handle: RePEc:spr:qualqt:v:57:y:2023:i:3:d:10.1007_s11135-022-01463-0
    DOI: 10.1007/s11135-022-01463-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-022-01463-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-022-01463-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
    2. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    3. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    4. Amin Azari, 2019. "Bitcoin Price Prediction: An ARIMA Approach," Papers 1904.05315, arXiv.org.
    5. Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
    6. Thomas Kim, 2015. "The Predecessors of Bitcoin and Their Implications for the Prospect of Virtual Currencies," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-18, April.
    7. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    8. Selgin, George, 2015. "Synthetic commodity money," Journal of Financial Stability, Elsevier, vol. 17(C), pages 92-99.
    9. Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018. "Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
    10. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
    11. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    12. Mohammad Reza Lotfalipour & Mohammad Ali Falahi & Morteza Bastam, 2013. "Prediction of CO2 Emissions in Iran using Grey and ARIMA Models," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 229-237.
    13. Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    14. Cheng, Qing & Liu, Xinyuan & Zhu, Xiaowu, 2019. "Cryptocurrency momentum effect: DFA and MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    15. Zolfaghari, Mehdi & Golabi, Mohammad Reza, 2021. "Modeling and predicting the electricity production in hydropower using conjunction of wavelet transform, long short-term memory and random forest models," Renewable Energy, Elsevier, vol. 170(C), pages 1367-1381.
    16. Salisu, Afees A. & Isah, Kazeem & Akanni, Lateef O., 2019. "Improving the predictability of stock returns with Bitcoin prices," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 857-867.
    17. Wang, Qiang & Li, Shuyu & Li, Rongrong & Ma, Minglu, 2018. "Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model," Energy, Elsevier, vol. 160(C), pages 378-387.
    18. Ziaul Haque Munim & Mohammad Hassan Shakil & Ilan Alon, 2019. "Next-Day Bitcoin Price Forecast," JRFM, MDPI, vol. 12(2), pages 1-15, June.
    19. Tomaso Aste, 2019. "Cryptocurrency market structure: connecting emotions and economics," Papers 1903.00472, arXiv.org.
    20. Neil Gandal & Hanna Halaburda, 2016. "Can We Predict the Winner in a Market with Network Effects? Competition in Cryptocurrency Market," Games, MDPI, vol. 7(3), pages 1-21, July.
    21. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    22. Tomaso Aste, 2019. "Cryptocurrency market structure: connecting emotions and economics," Digital Finance, Springer, vol. 1(1), pages 5-21, November.
    23. Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.
    24. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    25. Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    26. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Multifractal behavior of price and volume changes in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 54-61.
    27. Qin, Meng & Su, Chi-Wei & Tao, Ran, 2021. "BitCoin: A new basket for eggs?," Economic Modelling, Elsevier, vol. 94(C), pages 896-907.
    28. Arianna Agosto & Alessia Cafferata, 2020. "Financial Bubbles: A Study of Co-Explosivity in the Cryptocurrency Market," Risks, MDPI, vol. 8(2), pages 1-14, April.
    29. Xu, Xiaofeng & Wei, Zhifei & Ji, Qiang & Wang, Chenglong & Gao, Guowei, 2019. "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    30. Mahboubeh Faghih Mohammadi Jalali & Hanif Heidari, 2020. "Predicting changes in Bitcoin price using grey system theory," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-12, December.
    31. Abeer ElBahrawy & Laura Alessandretti & Anne Kandler & Romualdo Pastor-Satorras & Andrea Baronchelli, 2017. "Evolutionary dynamics of the cryptocurrency market," Papers 1705.05334, arXiv.org, revised Nov 2017.
    32. Francisco Javier García-Corral & José Antonio Cordero-García & Jaime de Pablo-Valenciano & Juan Uribe-Toril, 2022. "A bibliometric review of cryptocurrencies: how have they grown?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
    4. Omane-Adjepong, Maurice & Alagidede, Paul & Akosah, Nana Kwame, 2019. "Wavelet time-scale persistence analysis of cryptocurrency market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 105-120.
    5. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating Cryptocurrency Prices Using Machine Learning," Complexity, Hindawi, vol. 2018, pages 1-16, November.
    6. Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    7. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    8. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    9. Ziaul Haque Munim & Mohammad Hassan Shakil & Ilan Alon, 2019. "Next-Day Bitcoin Price Forecast," JRFM, MDPI, vol. 12(2), pages 1-15, June.
    10. Ji Ho Kwon, 2021. "On the factors of Bitcoin’s value at risk," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    11. Fang, Wen & Tian, Shaolin & Wang, Jun, 2018. "Multiscale fluctuations and complexity synchronization of Bitcoin in China and US markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 109-120.
    12. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    13. Andrada-Félix, Julián & Fernandez-Perez, Adrian & Sosvilla-Rivero, Simón, 2020. "Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    14. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 2021 Bitcoin Bubbles and Crashes—Detection and Classification," Stats, MDPI, vol. 4(4), pages 1-21, November.
    15. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    16. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    17. Yuze Li & Shangrong Jiang & Yunjie Wei & Shouyang Wang, 2021. "Take Bitcoin into your portfolio: a novel ensemble portfolio optimization framework for broad commodity assets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    18. Isah, Kazeem O. & Raheem, Ibrahim D., 2019. "The hidden predictive power of cryptocurrencies and QE: Evidence from US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    19. Kundan Mukhia & Anish Rai & SR Luwang & Md Nurujjaman & Sushovan Majhi & Chittaranjan Hens, 2024. "Complex network analysis of cryptocurrency market during crashes," Papers 2405.05642, arXiv.org.
    20. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.

    More about this item

    Keywords

    Grey system theory; Cryptocurrencies; Prediction; Time-series;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:57:y:2023:i:3:d:10.1007_s11135-022-01463-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.