IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.03210.html
   My bibliography  Save this paper

Universal Quantum Speedup for Branch-and-Bound, Branch-and-Cut, and Tree-Search Algorithms

Author

Listed:
  • Shouvanik Chakrabarti
  • Pierre Minssen
  • Romina Yalovetzky
  • Marco Pistoia

Abstract

Mixed Integer Programs (MIPs) model many optimization problems of interest in Computer Science, Operations Research, and Financial Engineering. Solving MIPs is NP-Hard in general, but several solvers have found success in obtaining near-optimal solutions for problems of intermediate size. Branch-and-Cut algorithms, which combine Branch-and-Bound logic with cutting-plane routines, are at the core of modern MIP solvers. Montanaro proposed a quantum algorithm with a near-quadratic speedup compared to classical Branch-and-Bound algorithms in the worst case, when every optimal solution is desired. In practice, however, a near-optimal solution is satisfactory, and by leveraging tree-search heuristics to search only a portion of the solution tree, classical algorithms can perform much better than the worst-case guarantee. In this paper, we propose a quantum algorithm, Incremental-Quantum-Branch-and-Bound, with universal near-quadratic speedup over classical Branch-and-Bound algorithms for every input, i.e., if classical Branch-and-Bound has complexity $Q$ on an instance that leads to solution depth $d$, Incremental-Quantum-Branch-and-Bound offers the same guarantees with a complexity of $\tilde{O}(\sqrt{Q}d)$. Our results are valid for a wide variety of search heuristics, including depth-based, cost-based, and $A^{\ast}$ heuristics. Universal speedups are also obtained for Branch-and-Cut as well as heuristic tree search. Our algorithms are directly comparable to commercial MIP solvers, and guarantee near quadratic speedup whenever $Q \gg d$. We use numerical simulation to verify that $Q \gg d$ for typical instances of the Sherrington-Kirkpatrick model, Maximum Independent Set, and Portfolio Optimization; as well as to extrapolate the dependence of $Q$ on input size parameters. This allows us to project the typical performance of our quantum algorithms for these important problems.

Suggested Citation

  • Shouvanik Chakrabarti & Pierre Minssen & Romina Yalovetzky & Marco Pistoia, 2022. "Universal Quantum Speedup for Branch-and-Bound, Branch-and-Cut, and Tree-Search Algorithms," Papers 2210.03210, arXiv.org.
  • Handle: RePEc:arx:papers:2210.03210
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.03210
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Grötschel & C. L. Monma & M. Stoer, 1995. "Polyhedral and Computational Investigations for Designing Communication Networks with High Survivability Requirements," Operations Research, INFORMS, vol. 43(6), pages 1012-1024, December.
    2. J. Clausen & M. Perregaard, 1999. "On the best search strategy in parallel branch‐and‐bound:Best‐First Search versus Lazy Depth‐First Search," Annals of Operations Research, Springer, vol. 90(0), pages 1-17, January.
    3. Andris A. Zoltners & Prabhakant Sinha, 1980. "Integer Programming Models for Sales Resource Allocation," Management Science, INFORMS, vol. 26(3), pages 242-260, March.
    4. Iordanis Kerenidis & Anupam Prakash & D'aniel Szil'agyi, 2019. "Quantum Algorithms for Portfolio Optimization," Papers 1908.08040, arXiv.org.
    5. SOUSA, Jorge P. & WOLSEY, Laurence A., 1992. "A time indexed formulation of non-preemptive single machine scheduling problems," LIDAM Reprints CORE 984, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    2. Baptiste, Philippe & Sadykov, Ruslan, 2010. "Time-indexed formulations for scheduling chains on a single machine: An application to airborne radars," European Journal of Operational Research, Elsevier, vol. 203(2), pages 476-483, June.
    3. Brian Lunday & Hanif Sherali & Kevin Lunday, 2012. "The coastal seaspace patrol sector design and allocation problem," Computational Management Science, Springer, vol. 9(4), pages 483-514, November.
    4. Drexl, Andreas & Haase, Knut, 1996. "Fast approximation methods for sales force deployment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 411, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Frank Phillipson & Harshil Singh Bhatia, 2020. "Portfolio Optimisation Using the D-Wave Quantum Annealer," Papers 2012.01121, arXiv.org.
    6. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    7. Roberto Cordone & Pierre Hosteins & Giovanni Righini, 2018. "A Branch-and-Bound Algorithm for the Prize-Collecting Single-Machine Scheduling Problem with Deadlines and Total Tardiness Minimization," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 168-180, February.
    8. Abdessamad Ait El Cadi & Omar Souissi & Rabie Ben Atitallah & Nicolas Belanger & Abdelhakim Artiba, 2018. "Mathematical programming models for scheduling in a CPU/FPGA architecture with heterogeneous communication delays," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 629-640, March.
    9. Sanjeev Swami & Jehoshua Eliashberg & Charles B. Weinberg, 1999. "SilverScreener: A Modeling Approach to Movie Screens Management," Marketing Science, INFORMS, vol. 18(3), pages 352-372.
    10. J.M. van den Akker & C.A.J. Hurkens & M.W.P. Savelsbergh, 2000. "Time-Indexed Formulations for Machine Scheduling Problems: Column Generation," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 111-124, May.
    11. Bhatt, Sneha Dhyani & Sinha, Ankur & Jayaswal, Sachin, 2024. "The capacitated r-hub interdiction problem with congestion: Models and solution approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    12. AgralI, Semra & Geunes, Joseph, 2009. "Solving knapsack problems with S-curve return functions," European Journal of Operational Research, Elsevier, vol. 193(2), pages 605-615, March.
    13. Laureano Escudero & Javier Salmeron, 2005. "On a Fix-and-Relax Framework for a Class of Project Scheduling Problems," Annals of Operations Research, Springer, vol. 140(1), pages 163-188, November.
    14. Van den Broeke, Maud & Boute, Robert & Cardoen, Brecht & Samii, Behzad, 2017. "An efficient solution method to design the cost-minimizing platform portfolio," European Journal of Operational Research, Elsevier, vol. 259(1), pages 236-250.
    15. Kelly Cristina Poldi & Silvio Alexandre Araujo, 2016. "Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem," Annals of Operations Research, Springer, vol. 238(1), pages 497-520, March.
    16. Balasubramanian, Hari & Fowler, John & Keha, Ahmet & Pfund, Michele, 2009. "Scheduling interfering job sets on parallel machines," European Journal of Operational Research, Elsevier, vol. 199(1), pages 55-67, November.
    17. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    18. Kaouthar Deghdak & Vincent T’kindt & Jean-Louis Bouquard, 2016. "Scheduling evacuation operations," Journal of Scheduling, Springer, vol. 19(4), pages 467-478, August.
    19. Laporte, G. & Mesa, J.A. & Ortega, F.A. & Perea, F., 2011. "Planning rapid transit networks," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 95-104, September.
    20. Ljubić, Ivana & Mutzel, Petra & Zey, Bernd, 2017. "Stochastic survivable network design problems: Theory and practice," European Journal of Operational Research, Elsevier, vol. 256(2), pages 333-348.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.03210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.