IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.00558.html
   My bibliography  Save this paper

Improved Forecasting of Cryptocurrency Price using Social Signals

Author

Listed:
  • Maria Glenski
  • Tim Weninger
  • Svitlana Volkova

Abstract

Social media signals have been successfully used to develop large-scale predictive and anticipatory analytics. For example, forecasting stock market prices and influenza outbreaks. Recently, social data has been explored to forecast price fluctuations of cryptocurrencies, which are a novel disruptive technology with significant political and economic implications. In this paper we leverage and contrast the predictive power of social signals, specifically user behavior and communication patterns, from multiple social platforms GitHub and Reddit to forecast prices for three cyptocurrencies with high developer and community interest - Bitcoin, Ethereum, and Monero. We evaluate the performance of neural network models that rely on long short-term memory units (LSTMs) trained on historical price data and social data against price only LSTMs and baseline autoregressive integrated moving average (ARIMA) models, commonly used to predict stock prices. Our results not only demonstrate that social signals reduce error when forecasting daily coin price, but also show that the language used in comments within the official communities on Reddit (r/Bitcoin, r/Ethereum, and r/Monero) are the best predictors overall. We observe that models are more accurate in forecasting price one day ahead for Bitcoin (4% root mean squared percent error) compared to Ethereum (7%) and Monero (8%).

Suggested Citation

  • Maria Glenski & Tim Weninger & Svitlana Volkova, 2019. "Improved Forecasting of Cryptocurrency Price using Social Signals," Papers 1907.00558, arXiv.org.
  • Handle: RePEc:arx:papers:1907.00558
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.00558
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Svitlana Volkova & Ellyn Ayton & Katherine Porterfield & Courtney D Corley, 2017. "Forecasting influenza-like illness dynamics for military populations using neural networks and social media," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-22, December.
    2. Young Bin Kim & Jun Gi Kim & Wook Kim & Jae Ho Im & Tae Hyeong Kim & Shin Jin Kang & Chang Hun Kim, 2016. "Predicting Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    3. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    4. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    5. Sha Wang & Jean-Philippe Vergne, 2017. "Buzz Factor or Innovation Potential: What Explains Cryptocurrencies’ Returns?," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-17, January.
    6. Michael P. Cameron & Patrick Barrett & Bob Stewardson, 2013. "Can Social Media Predict Election Results? Evidence from New Zealand," Working Papers in Economics 13/08, University of Waikato.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico D'Amario & Milos Ciganovic, 2022. "Forecasting Cryptocurrencies Log-Returns: a LASSO-VAR and Sentiment Approach," Papers 2210.00883, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    3. Chopra, Ritika & Sharma, Gagan Deep & Pereira, Vijay, 2024. "Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction," Technovation, Elsevier, vol. 135(C).
    4. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    5. Zura Kakushadze & Willie Yu, 2019. "Altcoin-Bitcoin Arbitrage," Papers 1903.06033, arXiv.org, revised Apr 2019.
    6. Abeer ElBahrawy & Laura Alessandretti & Andrea Baronchelli, 2019. "Wikipedia and Digital Currencies: Interplay Between Collective Attention and Market Performance," Papers 1902.04517, arXiv.org, revised Mar 2019.
    7. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    8. Goedde-Menke, Michael & Langer, Thomas & Pfingsten, Andreas, 2014. "Impact of the financial crisis on bank run risk – Danger of the days after," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 522-533.
    9. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    10. Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
    11. Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
    12. Hanna Halaburda & Guillaume Haeringer & Joshua Gans & Neil Gandal, 2022. "The Microeconomics of Cryptocurrencies," Journal of Economic Literature, American Economic Association, vol. 60(3), pages 971-1013, September.
    13. Lixiang Wang & Wendi Hou & Yupei Liu, 2023. "How do co‐shareholding networks affect negative media coverage? Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4221-4249, December.
    14. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    15. Christopher N. Avery & Judith A. Chevalier & Richard J. Zeckhauser, 2016. "The "CAPS" Prediction System and Stock Market Returns," Review of Finance, European Finance Association, vol. 20(4), pages 1363-1381.
    16. White, Reilly & Marinakis, Yorgos & Islam, Nazrul & Walsh, Steven, 2020. "Is Bitcoin a currency, a technology-based product, or something else?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. Rui Liu & Jiayou Liang & Haolong Chen & Yujia Hu, 2024. "Analyst Reports and Stock Performance: Evidence from the Chinese Market," Papers 2411.08726, arXiv.org.
    18. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    19. Keval Amin & Erica Harris, 2022. "The Effect of Investor Sentiment on Nonprofit Donations," Journal of Business Ethics, Springer, vol. 175(2), pages 427-450, January.
    20. Femg, Xunan & Johansson, Anders C., 2019. "News or Noise? The Information Content of Social Media in China," Stockholm School of Economics Asia Working Paper Series 2019-52, Stockholm School of Economics, Stockholm China Economic Research Institute.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.00558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.