IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.14181.html
   My bibliography  Save this paper

Linear estimation of average global effects

Author

Listed:
  • Stefan Faridani
  • Paul Niehaus

Abstract

We study the problem of estimating the average causal effect of treating every member of a population, as opposed to none, using an experiment that treats only some. This is the policy-relevant estimand when deciding whether to scale up an intervention based on the results of an RCT, for example, but differs from the usual average treatment effect in the presence of spillovers. We consider both estimation and experimental design given a bound (parametrized by $\eta > 0$) on the rate at which spillovers decay with the ``distance'' between units, defined in a generalized way to encompass spatial and quasi-spatial settings, e.g. where the economically relevant concept of distance is a gravity equation. Over all estimators linear in the outcomes and all cluster-randomized designs the optimal geometric rate of convergence is $n^{-\frac{1}{2+\frac{1}{\eta}}}$, and this rate can be achieved using a generalized ``Scaling Clusters'' design that we provide. We then introduce the additional assumption, implicit in the OLS estimators used in recent applied studies, that potential outcomes are linear in population treatment assignments. These estimators are inconsistent for our estimand, but a refined OLS estimator is consistent and rate optimal, and performs better than IPW estimators when clusters must be small. Its finite-sample performance can be improved by incorporating prior information about the structure of spillovers. As a robust alternative to the linear approach we also provide a method to select estimator-design pairs that minimize a notion of worst-case risk when the data generating process is unknown. Finally, we provide asymptotically valid inference methods.

Suggested Citation

  • Stefan Faridani & Paul Niehaus, 2022. "Linear estimation of average global effects," Papers 2209.14181, arXiv.org, revised Sep 2023.
  • Handle: RePEc:arx:papers:2209.14181
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.14181
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    2. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    3. Paul Goldsmith-Pinkham & Guido W. Imbens, 2013. "Social Networks and the Identification of Peer Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 253-264, July.
    4. Edward Miguel & Michael Kremer, 2004. "Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities," Econometrica, Econometric Society, vol. 72(1), pages 159-217, January.
    5. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    6. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    2. William C. Horrace & Hyunseok Jung & Shane Sanders, 2022. "Network Competition and Team Chemistry in the NBA," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 35-49, January.
    3. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    4. Tan, Xiujie & Yan, Yaxue & Dong, Yuyang, 2022. "Peer effect in green credit induced green innovation: An empirical study from China's Green Credit Guidelines," Resources Policy, Elsevier, vol. 76(C).
    5. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    6. Tsusaka, Takuji W. & Kajisa, Kei & Pede, Valerien O. & Aoyagi, Keitaro, 2015. "Neighborhood effects and social behavior: The case of irrigated and rainfed farmers in Bohol, the Philippines," Journal of Economic Behavior & Organization, Elsevier, vol. 118(C), pages 227-246.
    7. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    8. Xiaodong Liu, 2020. "GMM identification and estimation of peer effects in a system of simultaneous equations," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-27, December.
    9. Ida Johnsson & Hyungsik Roger Moon, 2017. "Estimation of Peer Effects in Endogenous Social Networks: Control Function Approach," Papers 1709.10024, arXiv.org, revised Jul 2019.
    10. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    11. Grodner, Andrew & Kniesner, Thomas J. & Bishop, John A., 2011. "Social Interactions in the Labor Market," Foundations and Trends(R) in Microeconomics, now publishers, vol. 6(4), pages 265-366, September.
    12. Emir Malikov & Shunan Zhao, 2023. "On the Estimation of Cross-Firm Productivity Spillovers with an Application to FDI," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1207-1223, September.
    13. Kwok, Hon Ho, 2019. "Identification and estimation of linear social interaction models," Journal of Econometrics, Elsevier, vol. 210(2), pages 434-458.
    14. Jeong, Hanbat & Lee, Lung-fei, 2021. "Spatial dynamic game models for coevolution of intertemporal economic decision-making and spatial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
    15. Jochmans, Koen, 2023. "Peer effects and endogenous social interactions," Journal of Econometrics, Elsevier, vol. 235(2), pages 1203-1214.
    16. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    17. Joris Pinkse & Margaret E. Slade, 2010. "The Future Of Spatial Econometrics," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 103-117, February.
    18. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves, 2014. "Endogenous peer effects: local aggregate or local average?," Journal of Economic Behavior & Organization, Elsevier, vol. 103(C), pages 39-59.
    19. Zhou, Yiwei & Wang, Xiaokun & Holguín-Veras, José, 2016. "Discrete choice with spatial correlation: A spatial autoregressive binary probit model with endogenous weight matrix (SARBP-EWM)," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 440-455.
    20. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.14181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.