IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.12664.html
   My bibliography  Save this paper

Feature-Rich Long-term Bitcoin Trading Assistant

Author

Listed:
  • Jatin Nainani

    (K. J. Somaiya College of Engineering)

  • Nirman Taterh

    (K. J. Somaiya College of Engineering)

  • Md Ausaf Rashid

    (K. J. Somaiya College of Engineering)

  • Ankit Khivasara

    (K. J. Somaiya College of Engineering)

Abstract

For a long time predicting, studying and analyzing financial indices has been of major interest for the financial community. Recently, there has been a growing interest in the Deep-Learning community to make use of reinforcement learning which has surpassed many of the previous benchmarks in a lot of fields. Our method provides a feature rich environment for the reinforcement learning agent to work on. The aim is to provide long term profits to the user so, we took into consideration the most reliable technical indicators. We have also developed a custom indicator which would provide better insights of the Bitcoin market to the user. The Bitcoin market follows the emotions and sentiments of the traders, so another element of our trading environment is the overall daily Sentiment Score of the market on Twitter. The agent is tested for a period of 685 days which also included the volatile period of Covid-19. It has been capable of providing reliable recommendations which give an average profit of about 69%. Finally, the agent is also capable of suggesting the optimal actions to the user through a website. Users on the website can also access the visualizations of the indicators to help fortify their decisions.

Suggested Citation

  • Jatin Nainani & Nirman Taterh & Md Ausaf Rashid & Ankit Khivasara, 2022. "Feature-Rich Long-term Bitcoin Trading Assistant," Papers 2209.12664, arXiv.org.
  • Handle: RePEc:arx:papers:2209.12664
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.12664
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. JoonBum Leem & Ha Young Kim, 2020. "Action-specialized expert ensemble trading system with extended discrete action space using deep reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-39, July.
    2. Pieter de Jong & Sherif Elfayoumy & Oliver Schnusenberg, 2017. "From Returns to Tweets and Back: An Investigation of the Stocks in the Dow Jones Industrial Average," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 18(1), pages 54-64, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xinjie & Xiang, Zhiqiang & Xu, Weike & Yuan, Peixuan, 2022. "The causal relationship between social media sentiment and stock return: Experimental evidence from an online message forum," Economics Letters, Elsevier, vol. 216(C).
    2. Nepp, Alexander & Okhrin, Ostap & Egorova, Julia & Dzhuraeva, Zarnigor & Zykov, Alexander, 2022. "What threatens stock markets more - The coronavirus or the hype around it?," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 519-539.
    3. Adrian Millea, 2021. "Deep Reinforcement Learning for Trading—A Critical Survey," Data, MDPI, vol. 6(11), pages 1-25, November.
    4. Bowden, James & Gemayel, Roland, 2022. "Sentiment and trading decisions in an ambiguous environment: A study on cryptocurrency traders," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    5. Broadstock, David C. & Zhang, Dayong, 2019. "Social-media and intraday stock returns: The pricing power of sentiment," Finance Research Letters, Elsevier, vol. 30(C), pages 116-123.
    6. Kyriazis, Nikolaos A. & Papadamou, Stephanos & Tzeremes, Panayiotis, 2023. "Are benchmark stock indices, precious metals or cryptocurrencies efficient hedges against crises?," Economic Modelling, Elsevier, vol. 128(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.12664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.