IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.11837.html
   My bibliography  Save this paper

Doubly Fair Dynamic Pricing

Author

Listed:
  • Jianyu Xu
  • Dan Qiao
  • Yu-Xiang Wang

Abstract

We study the problem of online dynamic pricing with two types of fairness constraints: a "procedural fairness" which requires the proposed prices to be equal in expectation among different groups, and a "substantive fairness" which requires the accepted prices to be equal in expectation among different groups. A policy that is simultaneously procedural and substantive fair is referred to as "doubly fair". We show that a doubly fair policy must be random to have higher revenue than the best trivial policy that assigns the same price to different groups. In a two-group setting, we propose an online learning algorithm for the 2-group pricing problems that achieves $\tilde{O}(\sqrt{T})$ regret, zero procedural unfairness and $\tilde{O}(\sqrt{T})$ substantive unfairness over $T$ rounds of learning. We also prove two lower bounds showing that these results on regret and unfairness are both information-theoretically optimal up to iterated logarithmic factors. To the best of our knowledge, this is the first dynamic pricing algorithm that learns to price while satisfying two fairness constraints at the same time.

Suggested Citation

  • Jianyu Xu & Dan Qiao & Yu-Xiang Wang, 2022. "Doubly Fair Dynamic Pricing," Papers 2209.11837, arXiv.org.
  • Handle: RePEc:arx:papers:2209.11837
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.11837
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erik Eyster & Kristóf Madarász & Pascal Michaillat, 2021. "Pricing Under Fairness Concerns," Journal of the European Economic Association, European Economic Association, vol. 19(3), pages 1853-1898.
    2. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2019. "Nonparametric Self-Adjusting Control for Joint Learning and Optimization of Multiproduct Pricing with Finite Resource Capacity," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 601-631, May.
    3. Omar Besbes & Assaf Zeevi, 2015. "On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning," Management Science, INFORMS, vol. 61(4), pages 723-739, April.
    4. Richards, Timothy & Liaukonyte, Jura & Nadia, Streletskya, 2016. "Personalized Pricing and Price Fairness," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235809, Agricultural and Applied Economics Association.
    5. Maxime C. Cohen & Ilan Lobel & Renato Paes Leme, 2020. "Feature-Based Dynamic Pricing," Management Science, INFORMS, vol. 66(11), pages 4921-4943, November.
    6. Anna Priester & Thomas Robbert & Stefan Roth, 2020. "A special price just for you: effects of personalized dynamic pricing on consumer fairness perceptions," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(2), pages 99-112, April.
    7. Zizhuo Wang & Shiming Deng & Yinyu Ye, 2014. "Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems," Operations Research, INFORMS, vol. 62(2), pages 318-331, April.
    8. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    9. Jianyu Xu & Yu-Xiang Wang, 2022. "Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise," Papers 2201.11341, arXiv.org, revised Apr 2022.
    10. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    11. Frey, Bruno S. & Pommerehne, Werner W., 1993. "On the fairness of pricing -- An empirical survey among the general population," Journal of Economic Behavior & Organization, Elsevier, vol. 20(3), pages 295-307, April.
    12. Richards, Timothy J. & Liaukonyte, Jura & Streletskaya, Nadia A., 2016. "Personalized pricing and price fairness," International Journal of Industrial Organization, Elsevier, vol. 44(C), pages 138-153.
    13. Jianyu Xu & Yu-Xiang Wang, 2021. "Logarithmic Regret in Feature-based Dynamic Pricing," Papers 2102.10221, arXiv.org, revised Oct 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiwei Chen & Cong Shi, 2023. "Network revenue management with online inverse batch gradient descent method," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2123-2137, July.
    2. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    3. Jianyu Xu & Yu-Xiang Wang, 2022. "Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise," Papers 2201.11341, arXiv.org, revised Apr 2022.
    4. Yining Wang & Xi Chen & Xiangyu Chang & Dongdong Ge, 2021. "Uncertainty Quantification for Demand Prediction in Contextual Dynamic Pricing," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1703-1717, June.
    5. Qi Feng & J. George Shanthikumar, 2022. "Developing operations management data analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4544-4557, December.
    6. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    7. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    8. Athanassios N. Avramidis, 2020. "A pricing problem with unknown arrival rate and price sensitivity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 77-106, August.
    9. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    10. Peter Seele & Claus Dierksmeier & Reto Hofstetter & Mario D. Schultz, 2021. "Mapping the Ethicality of Algorithmic Pricing: A Review of Dynamic and Personalized Pricing," Journal of Business Ethics, Springer, vol. 170(4), pages 697-719, May.
    11. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    12. Wang Chi Cheung & David Simchi-Levi & He Wang, 2017. "Technical Note—Dynamic Pricing and Demand Learning with Limited Price Experimentation," Operations Research, INFORMS, vol. 65(6), pages 1722-1731, December.
    13. Jianqing Fan & Yongyi Guo & Mengxin Yu, 2021. "Policy Optimization Using Semi-parametric Models for Dynamic Pricing," Papers 2109.06368, arXiv.org, revised May 2022.
    14. Sentao Miao & Xi Chen & Xiuli Chao & Jiaxi Liu & Yidong Zhang, 2022. "Context‐based dynamic pricing with online clustering," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3559-3575, September.
    15. Hamsa Bastani & David Simchi-Levi & Ruihao Zhu, 2022. "Meta Dynamic Pricing: Transfer Learning Across Experiments," Management Science, INFORMS, vol. 68(3), pages 1865-1881, March.
    16. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2021. "Technical Note—Joint Learning and Optimization of Multi-Product Pricing with Finite Resource Capacity and Unknown Demand Parameters," Operations Research, INFORMS, vol. 69(2), pages 560-573, March.
    17. Yining Wang & Boxiao Chen & David Simchi-Levi, 2021. "Multimodal Dynamic Pricing," Management Science, INFORMS, vol. 67(10), pages 6136-6152, October.
    18. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    19. Stefanus Jasin, 2014. "Reoptimization and Self-Adjusting Price Control for Network Revenue Management," Operations Research, INFORMS, vol. 62(5), pages 1168-1178, October.
    20. Zeqi Ye & Hansheng Jiang, 2023. "Smoothness-Adaptive Dynamic Pricing with Nonparametric Demand Learning," Papers 2310.07558, arXiv.org, revised Oct 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.11837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.