IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v69y2021i3p974-984.html
   My bibliography  Save this article

Nonparametric Pricing Analytics with Customer Covariates

Author

Listed:
  • Ningyuan Chen

    (Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada)

  • Guillermo Gallego

    (Department of Industrial Engineering and Decision Analytics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

Abstract

Personalized pricing analytics is becoming an essential tool in retailing. Upon observing the personalized information of each arriving customer, the firm needs to set a price accordingly based on the covariates, such as income, education background, and past purchasing history, to extract more revenue. For new entrants of the business, the lack of historical data may severely limit the power and profitability of personalized pricing. We propose a nonparametric pricing policy to simultaneously learn the preference of customers based on the covariates and maximize the expected revenue over a finite horizon. The policy does not depend on any prior assumptions on how the personalized information affects consumers’ preferences (such as linear models). It adaptively splits the covariate space into smaller bins (hyper-rectangles) and clusters customers based on their covariates and preferences, offering similar prices for customers who belong to the same cluster trading off granularity and accuracy. We show that the algorithm achieves a regret of order O ( log ( T ) 2 T ( 2 + d ) / ( 4 + d ) ) , where T is the length of the horizon and d is the dimension of the covariate. It improves the current regret in the literature ( Slivkins 2014 ) under mild technical conditions in the pricing context (smoothness and local concavity). We also prove that no policy can achieve a regret less than O ( T ( 2 + d ) / ( 4 + d ) ) for a particular instance and, thus, demonstrate the near-optimality of the proposed policy.

Suggested Citation

  • Ningyuan Chen & Guillermo Gallego, 2021. "Nonparametric Pricing Analytics with Customer Covariates," Operations Research, INFORMS, vol. 69(3), pages 974-984, May.
  • Handle: RePEc:inm:oropre:v:69:y:2021:i:3:p:974-984
    DOI: 10.1287/opre.2020.2016
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2020.2016
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2020.2016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar Besbes & Assaf Zeevi, 2012. "Blind Network Revenue Management," Operations Research, INFORMS, vol. 60(6), pages 1537-1550, December.
    2. Victor F. Araman & René Caldentey, 2009. "Dynamic Pricing for Nonperishable Products with Demand Learning," Operations Research, INFORMS, vol. 57(5), pages 1169-1188, October.
    3. Vivek F. Farias & Benjamin Van Roy, 2010. "Dynamic Pricing with a Prior on Market Response," Operations Research, INFORMS, vol. 58(1), pages 16-29, February.
    4. Hamsa Bastani & Mohsen Bayati, 2020. "Online Decision Making with High-Dimensional Covariates," Operations Research, INFORMS, vol. 68(1), pages 276-294, January.
    5. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    6. Zizhuo Wang & Shiming Deng & Yinyu Ye, 2014. "Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems," Operations Research, INFORMS, vol. 62(2), pages 318-331, April.
    7. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    8. Wang Chi Cheung & David Simchi-Levi & He Wang, 2017. "Technical Note—Dynamic Pricing and Demand Learning with Limited Price Experimentation," Operations Research, INFORMS, vol. 65(6), pages 1722-1731, December.
    9. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sentao Miao & Xi Chen & Xiuli Chao & Jiaxi Liu & Yidong Zhang, 2022. "Context‐based dynamic pricing with online clustering," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3559-3575, September.
    2. Franc{c}ois Bachoc & Tommaso Cesari & Roberto Colomboni, 2024. "A Contextual Online Learning Theory of Brokerage," Papers 2407.01566, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    2. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    3. Athanassios N. Avramidis, 2020. "A pricing problem with unknown arrival rate and price sensitivity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 77-106, August.
    4. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    5. Yining Wang & Boxiao Chen & David Simchi-Levi, 2021. "Multimodal Dynamic Pricing," Management Science, INFORMS, vol. 67(10), pages 6136-6152, October.
    6. Boxiao Chen & David Simchi-Levi & Yining Wang & Yuan Zhou, 2022. "Dynamic Pricing and Inventory Control with Fixed Ordering Cost and Incomplete Demand Information," Management Science, INFORMS, vol. 68(8), pages 5684-5703, August.
    7. Gah-Yi Ban & N. Bora Keskin, 2021. "Personalized Dynamic Pricing with Machine Learning: High-Dimensional Features and Heterogeneous Elasticity," Management Science, INFORMS, vol. 67(9), pages 5549-5568, September.
    8. Xi Chen & David Simchi-Levi & Yining Wang, 2022. "Privacy-Preserving Dynamic Personalized Pricing with Demand Learning," Management Science, INFORMS, vol. 68(7), pages 4878-4898, July.
    9. Sentao Miao & Xi Chen & Xiuli Chao & Jiaxi Liu & Yidong Zhang, 2022. "Context‐based dynamic pricing with online clustering," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3559-3575, September.
    10. Ningyuan Chen & Guillermo Gallego, 2018. "A Primal-dual Learning Algorithm for Personalized Dynamic Pricing with an Inventory Constraint," Papers 1812.09234, arXiv.org, revised Oct 2021.
    11. Arnoud V. den Boer & N. Bora Keskin, 2022. "Dynamic Pricing with Demand Learning and Reference Effects," Management Science, INFORMS, vol. 68(10), pages 7112-7130, October.
    12. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    13. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2021. "Technical Note—Joint Learning and Optimization of Multi-Product Pricing with Finite Resource Capacity and Unknown Demand Parameters," Operations Research, INFORMS, vol. 69(2), pages 560-573, March.
    14. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    15. Ruben Geer & Arnoud V. Boer & Christopher Bayliss & Christine S. M. Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbjørn Nilsen Ris, 2019. "Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(3), pages 185-203, June.
    16. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    17. Yiwei Chen & Cong Shi, 2023. "Network revenue management with online inverse batch gradient descent method," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2123-2137, July.
    18. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    19. Michael N. Katehakis & Yifeng Liu & Jian Yang, 2022. "A revisit to the markup practice of irreversible dynamic pricing," Annals of Operations Research, Springer, vol. 317(1), pages 77-105, October.
    20. Ruben van de Geer & Arnoud V. den Boer & Christopher Bayliss & Christine Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbj{o}rn Nil, 2018. "Dynamic Pricing and Learning with Competition: Insights from the Dynamic Pricing Challenge at the 2017 INFORMS RM & Pricing Conference," Papers 1804.03219, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:69:y:2021:i:3:p:974-984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.