IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.09690.html
   My bibliography  Save this paper

Gradient Descent Ascent in Min-Max Stackelberg Games

Author

Listed:
  • Denizalp Goktas
  • Amy Greenwald

Abstract

Min-max optimization problems (i.e., min-max games) have attracted a great deal of attention recently as their applicability to a wide range of machine learning problems has become evident. In this paper, we study min-max games with dependent strategy sets, where the strategy of the first player constrains the behavior of the second. Such games are best understood as sequential, i.e., Stackelberg, games, for which the relevant solution concept is Stackelberg equilibrium, a generalization of Nash. One of the most popular algorithms for solving min-max games is gradient descent ascent (GDA). We present a straightforward generalization of GDA to min-max Stackelberg games with dependent strategy sets, but show that it may not converge to a Stackelberg equilibrium. We then introduce two variants of GDA, which assume access to a solution oracle for the optimal Karush Kuhn Tucker (KKT) multipliers of the games' constraints. We show that such an oracle exists for a large class of convex-concave min-max Stackelberg games, and provide proof that our GDA variants with such an oracle converge in $O(\frac{1}{\varepsilon^2})$ iterations to an $\varepsilon$-Stackelberg equilibrium, improving on the most efficient algorithms currently known which converge in $O(\frac{1}{\varepsilon^3})$ iterations. We then show that solving Fisher markets, a canonical example of a min-max Stackelberg game, using our novel algorithm, corresponds to buyers and sellers using myopic best-response dynamics in a repeated market, allowing us to prove the convergence of these dynamics in $O(\frac{1}{\varepsilon^2})$ iterations in Fisher markets. We close by describing experiments on Fisher markets which suggest potential ways to extend our theoretical results, by demonstrating how different properties of the objective function can affect the convergence and convergence rate of our algorithms.

Suggested Citation

  • Denizalp Goktas & Amy Greenwald, 2022. "Gradient Descent Ascent in Min-Max Stackelberg Games," Papers 2208.09690, arXiv.org.
  • Handle: RePEc:arx:papers:2208.09690
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.09690
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William C. Brainard & Herbert E. Scarf, 2005. "How to Compute Equilibrium Prices in 1891," American Journal of Economics and Sociology, Wiley Blackwell, vol. 64(1), pages 57-83, January.
    2. Denizalp Goktas & Enrique Areyan Viqueira & Amy Greenwald, 2021. "A Consumer-Theoretic Characterization of Fisher Market Equilibria," Papers 2107.08153, arXiv.org, revised Jan 2022.
    3. Morton Slater, 1959. "Lagrange Multipliers Revisited," Cowles Foundation Discussion Papers 80, Cowles Foundation for Research in Economics, Yale University.
    4. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    5. NESTEROV, Yurii & SCRIMALI, Laura, 2011. "Solving strongly monotone variational and quasi-variational inequalities," LIDAM Reprints CORE 2357, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. A. Nedić & A. Ozdaglar, 2009. "Subgradient Methods for Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 205-228, July.
    7. Aharon Ben-Tal & Elad Hazan & Tomer Koren & Shie Mannor, 2015. "Oracle-Based Robust Optimization via Online Learning," Operations Research, INFORMS, vol. 63(3), pages 628-638, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denizalp Goktas & Jiayi Zhao & Amy Greenwald, 2022. "Robust No-Regret Learning in Min-Max Stackelberg Games," Papers 2203.14126, arXiv.org, revised Apr 2022.
    2. Denizalp Goktas & Jiayi Zhao & Amy Greenwald, 2023. "T\^atonnement in Homothetic Fisher Markets," Papers 2306.04890, arXiv.org.
    3. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    4. Oliver Stein & Nathan Sudermann-Merx, 2016. "The Cone Condition and Nonsmoothness in Linear Generalized Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 687-709, August.
    5. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    6. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    7. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    8. Nikhil Garg & Ashish Goel & Benjamin Plaut, 2021. "Markets for public decision-making," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(4), pages 755-801, May.
    9. Avinash N. Madavan & Subhonmesh Bose, 2021. "A Stochastic Primal-Dual Method for Optimization with Conditional Value at Risk Constraints," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 428-460, August.
    10. Ortega, Josué, 2020. "Multi-unit assignment under dichotomous preferences," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 15-24.
    11. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    12. Leonardo Galli & Christian Kanzow & Marco Sciandrone, 2018. "A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties," Computational Optimization and Applications, Springer, vol. 69(3), pages 629-652, April.
    13. Nagurney, Anna, 2021. "Supply chain game theory network modeling under labor constraints: Applications to the Covid-19 pandemic," European Journal of Operational Research, Elsevier, vol. 293(3), pages 880-891.
    14. Sandomirskiy, Fedor & Ushchev, Philip, 2024. "The geometry of consumer preference aggregation," CEPR Discussion Papers 19100, C.E.P.R. Discussion Papers.
    15. Otgochuluu, Ch. & Altangerel, L. & Battur, G. & Khashchuluun, Ch. & Dorjsundui, G., 2021. "A game theory application in the copper market," Resources Policy, Elsevier, vol. 70(C).
    16. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    17. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    18. Bruno Codenotti & Kasturi Varadarajan, 2005. "Market Equilibrium in Exchange Economies with Some Families of Concave Utility Functions," Computational Economics 0503001, University Library of Munich, Germany.
    19. Robert W. Dimand, 2019. "Léon Walras, Irving Fisher and the Cowles Approach to General Equilibrium Analysis," Cowles Foundation Discussion Papers 2205, Cowles Foundation for Research in Economics, Yale University.
    20. Amir Gandomi & Amirhossein Bazargan & Saeed Zolfaghari, 2019. "Designing competitive loyalty programs: a stochastic game-theoretic model to guide the choice of reward structure," Annals of Operations Research, Springer, vol. 280(1), pages 267-298, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.09690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.