IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/79.html
   My bibliography  Save this paper

On the Computation of Optimal Monotone Mean-Variance Portfolios via Truncated Quadratic Utility

Author

Listed:
  • Ales Cerný
  • Fabio Maccheroni
  • Massimo Marinacci
  • Aldo Rustichini

Abstract

We report a surprising link between optimal portfolios generated by a special type of variational preferences called divergence preferences (cf. [8]) and optimal portfolios generated by classical expected utility. As a special case we connect optimization of truncated quadratic utility (cf. [2]) to the optimal monotone mean-variance portfolios (cf. [9]), thus simplifying the computation of the latter.

Suggested Citation

  • Ales Cerný & Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2008. "On the Computation of Optimal Monotone Mean-Variance Portfolios via Truncated Quadratic Utility," Carlo Alberto Notebooks 79, Collegio Carlo Alberto.
  • Handle: RePEc:cca:wpaper:79
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.79.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    3. Cern›, Ales, 2002. "Generalized Sharpe Ratios and Asset Pricing in Incomplete Markets," Royal Economic Society Annual Conference 2002 41, Royal Economic Society.
    4. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    5. Filipovic, Damir & Kupper, Michael, 2007. "Monotone and cash-invariant convex functions and hulls," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 1-16, July.
    6. Aleš Černý & Jan Kallsen, 2008. "Mean–Variance Hedging And Optimal Investment In Heston'S Model With Correlation," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 473-492, July.
    7. Hanqing Jin & Harry Markowitz & Xun Yu Zhou, 2006. "A Note On Semivariance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 53-61, January.
    8. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    9. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Éric André, 2014. "Crisp Fair Gambles," AMSE Working Papers 1410, Aix-Marseille School of Economics, France, revised 15 Mar 2014.
    2. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    3. Alev{s} v{C}ern'y, 2019. "Semimartingale theory of monotone mean--variance portfolio allocation," Papers 1903.06912, arXiv.org, revised Jan 2020.
    4. Samuel Drapeau & Michael Kupper & Antonis Papapantoleon, 2012. "A Fourier Approach to the Computation of CV@R and Optimized Certainty Equivalents," Papers 1212.6732, arXiv.org, revised Dec 2013.
    5. Yang Shen & Bin Zou, 2022. "Cone-constrained Monotone Mean-Variance Portfolio Selection Under Diffusion Models," Papers 2205.15905, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    2. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    3. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    4. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    5. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    6. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    7. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    8. Nendel, Max & Riedel, Frank & Schmeck, Maren Diane, 2021. "A decomposition of general premium principles into risk and deviation," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 193-209.
    9. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    10. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    11. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    12. Jinwook Lee & András Prékopa, 2015. "Decision-making from a risk assessment perspective for Corporate Mergers and Acquisitions," Computational Management Science, Springer, vol. 12(2), pages 243-266, April.
    13. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    14. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    15. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    16. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    17. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.
    18. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    19. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    20. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.

    More about this item

    Keywords

    optimal portfolio; truncated quadratic utility; monotone mean-variance preferences; divergence preferences; HARA utility;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.