IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.08913.html
   My bibliography  Save this paper

Price Interpretability of Prediction Markets: A Convergence Analysis

Author

Listed:
  • Dian Yu
  • Jianjun Gao
  • Weiping Wu
  • Zizhuo Wang

Abstract

Prediction markets are long known for prediction accuracy. This study systematically explores the fundamental properties of prediction markets, addressing questions about their information aggregation process and the factors contributing to their remarkable efficacy. We propose a novel multivariate utility (MU) based mechanism that unifies several existing automated market-making schemes. Using this mechanism, we establish the convergence results for markets comprised of risk-averse traders who have heterogeneous beliefs and repeatedly interact with the market maker. We demonstrate that the resulting limiting wealth distribution aligns with the Pareto efficient frontier defined by the utilities of all market participants. With the help of this result, we establish analytical and numerical results for the limiting price in different market models. Specifically, we show that the limiting price converges to the geometric mean of agent beliefs in exponential utility-based markets. In risk-measure-based markets, we construct a family of risk measures that satisfy the convergence criteria and prove that the price can converge to a unique level represented by the weighted power mean of agent beliefs. In broader markets with Constant Relative Risk Aversion (CRRA) utilities, we reveal that the limiting price can be characterized by systems of equations that encapsulate agent beliefs, risk parameters, and wealth. Despite the potential impact of traders' trading sequences on the limiting price, we establish a price invariance result for markets with a large trader population. Using this result, we propose an efficient approximation scheme for the limiting price.

Suggested Citation

  • Dian Yu & Jianjun Gao & Weiping Wu & Zizhuo Wang, 2022. "Price Interpretability of Prediction Markets: A Convergence Analysis," Papers 2205.08913, arXiv.org, revised Nov 2023.
  • Handle: RePEc:arx:papers:2205.08913
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.08913
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F., 2006. "Interpreting the predictions of prediction markets," Economics Letters, Elsevier, vol. 91(3), pages 425-429, June.
    2. Shipra Agrawal & Erick Delage & Mark Peters & Zizhuo Wang & Yinyu Ye, 2011. "A Unified Framework for Dynamic Prediction Market Design," Operations Research, INFORMS, vol. 59(3), pages 550-568, June.
    3. Marc Oliver Rieger & Mei Wang & Thorsten Hens, 2017. "Estimating cumulative prospect theory parameters from an international survey," Theory and Decision, Springer, vol. 82(4), pages 567-596, April.
    4. Justin Wolfers & Eric Zitzewitz, 2006. "Interpreting prediction market prices as probabilities," Working Paper Series 2006-11, Federal Reserve Bank of San Francisco.
    5. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    6. Robin Hanson, 2007. "Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation," Journal of Prediction Markets, University of Buckingham Press, vol. 1(1), pages 3-15, February.
    7. Makarov, Dmitry & Schornick, Astrid V., 2010. "A note on wealth effect under CARA utility," Finance Research Letters, Elsevier, vol. 7(3), pages 170-177, September.
    8. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    9. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    10. Michael Ostrovsky, 2012. "Information Aggregation in Dynamic Markets With Strategic Traders," Econometrica, Econometric Society, vol. 80(6), pages 2595-2647, November.
    11. Yiling Chen & David M Pennock, 2012. "A Utility Framework for Bounded-Loss Market Makers," Papers 1206.5252, arXiv.org.
    12. Krishnamurthy Iyer & Ramesh Johari & Ciamac C. Moallemi, 2014. "Information Aggregation and Allocative Efficiency in Smooth Markets," Management Science, INFORMS, vol. 60(10), pages 2509-2524, October.
    13. Robin Hanson, 2003. "Combinatorial Information Market Design," Information Systems Frontiers, Springer, vol. 5(1), pages 107-119, January.
    14. Rajiv Sethi & Jennifer Wortman Vaughan, 2016. "Belief Aggregation with Automated Market Makers," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 155-178, June.
    15. Berg, Joyce E. & Nelson, Forrest D. & Rietz, Thomas A., 2008. "Prediction market accuracy in the long run," International Journal of Forecasting, Elsevier, vol. 24(2), pages 285-300.
    16. Razvan Tarnaud, 2019. "Convergence within binary market scoring rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 1017-1050, November.
    17. Nicholas C. Barberis, 2013. "Thirty Years of Prospect Theory in Economics: A Review and Assessment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 173-196, Winter.
    18. Jinli Hu & Amos Storkey, 2014. "Multi-period Trading Prediction Markets with Connections to Machine Learning," Papers 1403.0648, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    2. Rajiv Sethi & Jennifer Wortman Vaughan, 2016. "Belief Aggregation with Automated Market Makers," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 155-178, June.
    3. Yu, Dian & Gao, Jianjun & Wang, Tongyao, 2022. "Betting market equilibrium with heterogeneous beliefs: A prospect theory-based model," European Journal of Operational Research, Elsevier, vol. 298(1), pages 137-151.
    4. Bergemann, Dirk & Ottaviani, Marco, 2021. "Information Markets and Nonmarkets," CEPR Discussion Papers 16459, C.E.P.R. Discussion Papers.
    5. Majid Karimi & Stanko Dimitrov, 2018. "On the Road to Making Science of “Art”: Risk Bias in Market Scoring Rules," Decision Analysis, INFORMS, vol. 15(2), pages 72-89, June.
    6. Edoardo Gaffeo, 2013. "Using information markets in grantmaking. An assessment of the issues involved and an application to Italian banking foundations," DEM Discussion Papers 2013/08, Department of Economics and Management.
    7. Razvan Tarnaud, 2019. "Convergence within binary market scoring rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 1017-1050, November.
    8. Mikuláš Gangur & Miroslav Plevný, 2014. "Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 578-578, May.
    9. Pavel Atanasov & Phillip Rescober & Eric Stone & Samuel A. Swift & Emile Servan-Schreiber & Philip Tetlock & Lyle Ungar & Barbara Mellers, 2017. "Distilling the Wisdom of Crowds: Prediction Markets vs. Prediction Polls," Management Science, INFORMS, vol. 63(3), pages 691-706, March.
    10. Alexander L. Brown & Taisuke Imai & Ferdinand M. Vieider & Colin F. Camerer, 2024. "Meta-analysis of Empirical Estimates of Loss Aversion," Journal of Economic Literature, American Economic Association, vol. 62(2), pages 485-516, June.
    11. Chi, Yichun & Zheng, Jiakun & Zhuang, Shengchao, 2022. "S-shaped narrow framing, skewness and the demand for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 279-292.
    12. Snowberg, Erik & Wolfers, Justin & Zitzewitz, Eric, 2013. "Prediction Markets for Economic Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 657-687, Elsevier.
    13. Jaroslava Hlouskova & Jana Mikocziova & Rudolf Sivak & Peter Tsigaris, 2014. "Capital Income Taxation and Risk-Taking under Prospect Theory: The Continuous Distribution Case," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(5), pages 374-391, November.
    14. Georgalos, Konstantinos & Paya, Ivan & Peel, David A., 2021. "On the contribution of the Markowitz model of utility to explain risky choice in experimental research," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 527-543.
    15. Arvanitis, Stelios & Scaillet, Olivier & Topaloglou, Nikolas, 2020. "Spanning analysis of stock market anomalies under prospect stochastic dominance," Working Papers unige:134101, University of Geneva, Geneva School of Economics and Management.
    16. EOM, Cheoljun & EOM, Yunsung & PARK, Jong Won, 2024. "Intermediate cross-sectional prospect theory value in stock markets: A novel method," International Review of Financial Analysis, Elsevier, vol. 93(C).
    17. Shunta Akiyama & Mitsuaki Obara & Yasushi Kawase, 2022. "Optimal design of lottery with cumulative prospect theory," Papers 2209.00822, arXiv.org.
    18. Spyros Galanis & Sergei Mikhalishchev, 2024. "Information Aggregation with Costly Information Acquisition," Papers 2406.07186, arXiv.org.
    19. Fang, Yi & Niu, Hui & Lin, Yuen, 2023. "Ex-ante Valuation based on Prospect Theory," MPRA Paper 116386, University Library of Munich, Germany.
    20. Pengguang Lu, 2023. "A Simple Model of Herding and Contrarian Behaviour with Biased Informed Traders," Economics Discussion Paper Series 2307, Economics, The University of Manchester, revised Dec 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.08913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.