Risk Preferences of Learning Algorithms
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Vasserman, Shoshana & Watt, Mitchell, 2021. "Risk aversion and auction design: Theoretical and empirical evidence," International Journal of Industrial Organization, Elsevier, vol. 79(C).
- Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020.
"Artificial Intelligence, Algorithmic Pricing, and Collusion,"
American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
- Calzolari, Giacomo & Calvano, Emilio & Denicolo, Vincenzo & Pastorello, Sergio, 2018. "Artificial intelligence, algorithmic pricing and collusion," CEPR Discussion Papers 13405, C.E.P.R. Discussion Papers.
- Karsten T. Hansen & Kanishka Misra & Mallesh M. Pai, 2021. "Frontiers: Algorithmic Collusion: Supra-competitive Prices via," Marketing Science, INFORMS, vol. 40(1), pages 1-12, January.
- John Asker & Chaim Fershtman & Ariel Pakes, 2021.
"Artificial Intelligence and Pricing: The Impact of Algorithm Design,"
NBER Working Papers
28535, National Bureau of Economic Research, Inc.
- Fershtman, Chaim & Asker, John & Pakes, Ariel, 2021. "Artificial intelligence and Pricing: The Impact of Algorithm Design," CEPR Discussion Papers 15880, C.E.P.R. Discussion Papers.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
- Aniko …ry & Ali Horta su & Kevin Williams, 2022. "Dynamic Price Competition: Theory and Evidence from Airline Markets," Cowles Foundation Discussion Papers 2341R1, Cowles Foundation for Research in Economics, Yale University, revised Apr 2023.
- Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
- Dolgopolov, Arthur, 2024. "Reinforcement learning in a prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 144(C), pages 84-103.
- Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
- Andreas A. Haupt & Phillip J. K. Christoffersen & Mehul Damani & Dylan Hadfield-Menell, 2022. "Formal Contracts Mitigate Social Dilemmas in Multi-Agent RL," Papers 2208.10469, arXiv.org, revised Jan 2024.
- Qian Qi, 2023. "Artificial Intelligence and Dual Contract," Papers 2303.12350, arXiv.org, revised Jun 2024.
- Shidi Deng & Maximilian Schiffer & Martin Bichler, 2024. "Algorithmic Collusion in Dynamic Pricing with Deep Reinforcement Learning," Papers 2406.02437, arXiv.org.
- Erik Hermann, 2022. "Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective," Journal of Business Ethics, Springer, vol. 179(1), pages 43-61, August.
- Bingyan Han, 2022. "Can maker-taker fees prevent algorithmic cooperation in market making?," Papers 2211.00496, arXiv.org.
- Ludovico Crippa & Yonatan Gur & Bar Light, 2022. "Equilibria in Repeated Games under No-Regret with Dynamic Benchmarks," Papers 2212.03152, arXiv.org, revised Jan 2025.
- Shi, Ziyi & Xu, Meng & Song, Yancun & Zhu, Zheng, 2024. "Multi-Platform dynamic game and operation of hybrid Bike-Sharing systems based on reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
- Inkoo Cho & Noah Williams, 2024. "Collusive Outcomes Without Collusion," Papers 2403.07177, arXiv.org.
- Kopalle, Praveen K. & Pauwels, Koen & Akella, Laxminarayana Yashaswy & Gangwar, Manish, 2023. "Dynamic pricing: Definition, implications for managers, and future research directions," Journal of Retailing, Elsevier, vol. 99(4), pages 580-593.
- Ding, Shasha & Sun, Hao & Sun, Panfei & Han, Weibin, 2022. "Dynamic outcome of coopetition duopoly with implicit collusion," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022.
"Artificial intelligence and systemic risk,"
Journal of Banking & Finance, Elsevier, vol. 140(C).
- Danielsson, Jon & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," LSE Research Online Documents on Economics 111601, London School of Economics and Political Science, LSE Library.
- Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
- Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
- Sinziana-Maria Rindasu & Ioan Dan Topor & Liliana Ionescu-Feleaga, 2023. "The Evolution of Management Accountants' Digital Skills in Industry 4.0: A Qualitative Approach," Oblik i finansi, Institute of Accounting and Finance, issue 1, pages 38-48, March.
- Zhijun Chen & pch346 & Chongwoo Choe & Jiajia Cong & Noriaki Matsushima, 2020.
"Data-Driven Mergers and Personalization,"
Monash Economics Working Papers
16-20, Monash University, Department of Economics.
- Zhijun Chen & Chongwoo Choe & Jiajia Cong & Noriaki Matsushima, 2020. "Data-driven mergers and personalization," ISER Discussion Paper 1108, Institute of Social and Economic Research, Osaka University.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2022-06-20 (Computational Economics)
- NEP-UPT-2022-06-20 (Utility Models and Prospect Theory)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.04619. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.