IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2203.05726.html
   My bibliography  Save this paper

General properties of the Solutions to Moving Boundary Problems for Black-Sholes Equations

Author

Listed:
  • Hyong-Chol O
  • Tae-Song Choe

Abstract

We study general properties such as the solution representation of a moving boundary value problem of the Black-Scholes equation, its min-max estimation, lower and upper gradient estimates, and strict monotonicity with respect to the spatial variables of the solution. These results are used in the study of a structural model of pricing puttable bond with credit risk. We first prove the solution representation of a special fixed boundary value problem of the Black-Scholes equation, the min-max estimate, the lower and upper gradient estimates, and the strict monotonicity with respect to the spatial variables of the solution. Then, these results are applied to give the solution representation of a moving boundary value problem of the Black-Scholes equation with moving boundary in the form of an exponential function, the min-max estimate, the lower and upper gradient estimates, and the strict monotonicity results on the spatial variables of the solution. Finally, we illustrate how these results can be used in the derivation of analytical pricing formulae and financial analysis of price functions of puttable bonds with credit risk (corporate bonds with one early redemption date). Our results can be used for the derivation and analysis of the analytical pricing formulae of the one-factor structural model of a more general puttable bonds with credit risk (corporate bond with several early redemption dates).

Suggested Citation

  • Hyong-Chol O & Tae-Song Choe, 2022. "General properties of the Solutions to Moving Boundary Problems for Black-Sholes Equations," Papers 2203.05726, arXiv.org.
  • Handle: RePEc:arx:papers:2203.05726
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2203.05726
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cox, John C & Ross, Stephen A, 1976. "A Survey of Some New Results in Financial Option Pricing Theory," Journal of Finance, American Finance Association, vol. 31(2), pages 383-402, May.
    2. Hyong-Chol O & Tae-Song Kim & Tae-Song Choe, 2021. "Solution Representations of Solving Problems for the Black-Scholes equations and Application to the Pricing Options on Bond with Credit Risk," Papers 2109.10818, arXiv.org, revised Nov 2021.
    3. Bergman, Yaacov Z & Grundy, Bruce D & Wiener, Zvi, 1996. "General Properties of Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1573-1610, December.
    4. Hyong-Chol O & Ning Wan, 2013. "Analytical Pricing of Defaultable Bond with Stochastic Default Intensity," Papers 1303.1298, arXiv.org, revised Apr 2013.
    5. Peter Buchen, 2004. "The pricing of dual-expiry exotics," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 101-108.
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, "undated". "General Properties of Option Prices (Revision of 11-95) (Reprint 058)," Rodney L. White Center for Financial Research Working Papers 1-96, Wharton School Rodney L. White Center for Financial Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyong-Chol O & Ji-Sok Kim, 2013. "General Properties of Solutions to Inhomogeneous Black-Scholes Equations with Discontinuous Maturity Payoffs and Application," Papers 1309.6505, arXiv.org, revised Sep 2013.
    2. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    3. Garcia, R. & Renault, E., 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    4. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    5. Eric Rasmusen, 2004. "When Does Extra Risk Strictly Increase the Value of Options?," Finance 0409004, University Library of Munich, Germany.
    6. Norden, Lars, 2001. "Hedging of American equity options: do call and put prices always move in the direction as predicted by the movement in the underlying stock price?," Journal of Multinational Financial Management, Elsevier, vol. 11(4-5), pages 321-340, December.
    7. Chuang Yuang Lin & Dar Hsin Chen & Chin Yu Tsai, 2011. "The limitation of monotonicity property of option prices: an empirical evidence," Applied Economics, Taylor & Francis Journals, vol. 43(23), pages 3103-3113.
    8. Alfredo Ibáñez, 2005. "Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach," Computing in Economics and Finance 2005 216, Society for Computational Economics.
    9. Mykland, Per Aslak, 2019. "Combining statistical intervals and market prices: The worst case state price distribution," Journal of Econometrics, Elsevier, vol. 212(1), pages 272-285.
    10. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    11. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    12. José Fajardo & Ernesto Mordecki, 2006. "Skewness Premium with Lévy Processes," IBMEC RJ Economics Discussion Papers 2006-04, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    13. Yue, Tian & Zhang, Jin E. & Tan, Eric K.M., 2020. "The Chinese equity index options market," Emerging Markets Review, Elsevier, vol. 45(C).
    14. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    15. Juho Kanniainen & Robert Pich'e, 2012. "Stock Price Dynamics and Option Valuations under Volatility Feedback Effect," Papers 1209.4718, arXiv.org.
    16. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    17. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    18. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    19. repec:uts:finphd:40 is not listed on IDEAS
    20. Kyng, T. & Konstandatos, O. & Bienek, T., 2016. "Valuation of employee stock options using the exercise multiple approach and life tables," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 17-26.
    21. Hamed Ghanbari & Michael Oancea & Stylianos Perrakis, 2021. "Shedding light on a dark matter: Jump diffusion and option‐implied investor preferences," European Financial Management, European Financial Management Association, vol. 27(2), pages 244-286, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.05726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.