IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/216.html
   My bibliography  Save this paper

Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach

Author

Listed:
  • Alfredo Ibáñez

Abstract

Consider a non-spanned security C_{T} in an incomplete market. We study the risk/return trade-offs generated if this security is sold for an arbitrage-free price C₀ and then hedged. We consider recursive "one-period optimal" self-financing hedging strategies, a simple but tractable criterion. For continuous trading, diffusion processes, the one-period minimum variance portfolio is optimal. Let C₀(0) be its price. Self-financing implies that the residual risk is equal to the sum of the one-period orthogonal hedging errors, ∑_{t≤T}Y_{t}(0)e^{r(T-t)}. To compensate the residual risk, a risk premium y_{t}Δt is associated with every Y_{t}. Now let C₀(y) be the price of the hedging portfolio, and ∑_{t≤T}(Y_{t}(y)+y_{t}Δt)e^{r(T-t)} is the total residual risk. Although not the same, the one-period hedging errors Y_{t}(0) and Y_{t}(y) are orthogonal to the trading assets, and are perfectly correlated. This implies that the spanned option payoff does not depend on y. Let C₀=C₀(y). A main result follows. Any arbitrage-free price, C₀, is just the price of a hedging portfolio (such as in a complete market), C₀(0), plus a premium, C₀-C₀(0). That is, C₀(0) is the price of the option's payoff which can be spanned, and C₀-C₀(0) is the premium associated with the option's payoff which cannot be spanned (and yields a contingent risk premium of ∑y_{t}Δte^{r(T-t)} at maturity). We study other applications of option-pricing theory as well

Suggested Citation

  • Alfredo Ibáñez, 2005. "Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach," Computing in Economics and Finance 2005 216, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:216
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.4981.1107095602.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. Rong Fan & Anurag Gupta & Peter Ritchken, 2003. "Hedging in the Possible Presence of Unspanned Stochastic Volatility: Evidence from Swaption Markets," Journal of Finance, American Finance Association, vol. 58(5), pages 2219-2248, October.
    3. Ross, Stephen A, 1978. "A Simple Approach to the Valuation of Risky Streams," The Journal of Business, University of Chicago Press, vol. 51(3), pages 453-475, July.
    4. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413, October.
    5. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    6. Merton, Robert C, 1998. "Applications of Option-Pricing Theory: Twenty-Five Years Later," American Economic Review, American Economic Association, vol. 88(3), pages 323-349, June.
    7. Bergman, Yaacov Z & Grundy, Bruce D & Wiener, Zvi, 1996. "General Properties of Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1573-1610, December.
    8. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    9. Detemple, Jerome & Sundaresan, Suresh, 1999. "Nontraded Asset Valuation with Portfolio Constraints: A Binomial Approach," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 835-872.
    10. T. Clifton Green & Stephen Figlewski, 1999. "Market Risk and Model Risk for a Financial Institution Writing Options," Journal of Finance, American Finance Association, vol. 54(4), pages 1465-1499, August.
    11. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    12. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    16. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    17. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    18. Luenberger, David G., 2002. "A correlation pricing formula," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1113-1126, July.
    19. Ofek, Eli & Richardson, Matthew & Whitelaw, Robert F., 2004. "Limited arbitrage and short sales restrictions: evidence from the options markets," Journal of Financial Economics, Elsevier, vol. 74(2), pages 305-342, November.
    20. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    21. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    22. Antonio E. Bernardo & Olivier Ledoit, 2000. "Gain, Loss, and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 144-172, February.
    23. Mark Rubinstein, 1976. "The Valuation of Uncertain Income Streams and the Pricing of Options," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 407-425, Autumn.
    24. Eli Ofek & Matthew Richardson & Robert F. Whitelaw, 2003. "Limited Arbitrage and Short Sales Restrictions: Evidence from the Options Markets," NBER Working Papers 9423, National Bureau of Economic Research, Inc.
    25. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, "undated". "General Properties of Option Prices (Revision of 11-95) (Reprint 058)," Rodney L. White Center for Financial Research Working Papers 1-96, Wharton School Rodney L. White Center for Financial Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibáñez, Alfredo, 2005. "Option-pricing in incomplete markets: the hedging portfolio plus a risk premium-based recursive approach," DEE - Working Papers. Business Economics. WB wb058121, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    2. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    5. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    6. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
    7. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    8. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    9. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    10. Yishen Li & Jin Zhang, 2004. "Option pricing with Weyl-Titchmarsh theory," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 457-464.
    11. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    12. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    13. Maria Arduca & Cosimo Munari, 2020. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Papers 2012.08351, arXiv.org, revised Apr 2022.
    14. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    15. José Fajardo & Ernesto Mordecki, 2006. "Skewness Premium with Lévy Processes," IBMEC RJ Economics Discussion Papers 2006-04, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    16. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    17. Almeida, Caio & Freire, Gustavo, 2022. "Pricing of index options in incomplete markets," Journal of Financial Economics, Elsevier, vol. 144(1), pages 174-205.
    18. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    19. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    20. Hamed Ghanbari & Michael Oancea & Stylianos Perrakis, 2021. "Shedding light on a dark matter: Jump diffusion and option‐implied investor preferences," European Financial Management, European Financial Management Association, vol. 27(2), pages 244-286, March.

    More about this item

    Keywords

    Option Pricing; Incomplete Markets;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.