IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v23y2023i3d10.1007_s11067-022-09583-8.html
   My bibliography  Save this article

An Enhanced Semi-Flexible Transit Service with Introducing Meeting Points

Author

Listed:
  • Xin Li

    (Dalian Maritime University)

  • Wanying Liu

    (Dalian Maritime University)

  • Jingyuan Qiao

    (Dalian Maritime University)

  • Yanhao Li

    (Dalian Maritime University)

  • Jia Hu

    (Tongji University)

Abstract

Semi-flexible transit (SFT) has been widely investigated in recent years and is expected to improve the balance between accessibility and operational efficiency. However, a couple of critical issues remain, such as how to develop an optimization mechanism to achieve a win-win situation for both flexible-route and fixed-route service users simultaneously, how to identify a clear service boundary between flexible-route and fixed-route service areas, and how to improve the effectiveness and competitiveness of SFT. To address these issues, this study proposes an enhanced SFT system in which meeting points are introduced to establish one flexible stop that can serve multiple users. This system can directly contribute to reducing detours, which are the main problems hindering the promotion of flexible transit services. Analytical models are derived for this optimal design, and the artificial bee colony (ABC) algorithm is adopted to solve the proposed nonlinear problem. A series of numerical cases is designed to evaluate the performance of the proposed system, which is compared with the traditional fixed-route transit and conventional SFT without meeting points. Results demonstrate that the proposed SFT achieves a lower system cost and a shorter travel time in most cases where the observed benefits vary across different factors, including demand density, average travel distance, the wealth of population, and unit length of service segment. Moreover, the introduction of meeting points helps SFT significantly reduce the routing length.

Suggested Citation

  • Xin Li & Wanying Liu & Jingyuan Qiao & Yanhao Li & Jia Hu, 2023. "An Enhanced Semi-Flexible Transit Service with Introducing Meeting Points," Networks and Spatial Economics, Springer, vol. 23(3), pages 487-527, September.
  • Handle: RePEc:kap:netspa:v:23:y:2023:i:3:d:10.1007_s11067-022-09583-8
    DOI: 10.1007/s11067-022-09583-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-022-09583-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-022-09583-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    2. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    3. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.
    4. Davison, Lisa & Enoch, Marcus & Ryley, Tim & Quddus, Mohammed & Wang, Chao, 2014. "A survey of Demand Responsive Transport in Great Britain," Transport Policy, Elsevier, vol. 31(C), pages 47-54.
    5. Federico Malucelli & Maddalena Nonato & Stefano Pallottino, 1999. "Demand Adaptive Systems: Some Proposals on Flexible Transit1," Palgrave Macmillan Books, in: Tito A. Ciriani & Stefano Gliozzi & Ellis L. Johnson & Roberto Tadei (ed.), Operational Research in Industry, chapter 8, pages 157-182, Palgrave Macmillan.
    6. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    7. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    8. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    9. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    10. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    11. Li, Xiaopeng & Ma, Jiaqi & Cui, Jianxun & Ghiasi, Amir & Zhou, Fang, 2016. "Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 21-45.
    12. Wu, Liyu & Gu, Weihua & Fan, Wenbo & Cassidy, Michael J., 2020. "Optimal design of transit networks fed by shared bikes," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 63-83.
    13. Daganzo, Carlos F., 1984. "Checkpoint dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 315-327.
    14. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Chen, Peng Will & Nie, Yu Marco, 2017. "Analysis of an idealized system of demand adaptive paired-line hybrid transit," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 38-54.
    16. Ghasemian, Hadi & Ghasemian, Fahimeh & Vahdat-Nejad, Hamed, 2020. "Human urbanization algorithm: A novel metaheuristic approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 1-15.
    17. A Pratelli & F Schoen, 2001. "A mathematical programming model for the bus deviation route problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 494-502, May.
    18. Xie, Weijun & Ouyang, Yanfeng, 2015. "Optimal layout of transshipment facility locations on an infinite homogeneous plane," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 74-88.
    19. Daganzo, Carlos F. & Ouyang, Yanfeng, 2019. "A general model of demand-responsive transportation services: From taxi to ridesharing to dial-a-ride," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 213-224.
    20. Gu, Weihua & Amini, Zahra & Cassidy, Michael J., 2016. "Exploring alternative service schemes for busy transit corridors," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 126-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangveraphunsiri, Tawit & Cassidy, Michael J. & Daganzo, Carlos F., 2022. "Jitney-lite: a flexible-route feeder service for developing countries," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 1-13.
    2. Fan, Wenbo & Gu, Weihua & Xu, Meng, 2024. "Optimal design of ride-pooling as on-demand feeder services," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    3. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    4. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    5. Giovanni Calabro' & Andrea Araldo & Simon Oh & Ravi Seshadri & Giuseppe Inturri & Moshe Ben-Akiva, 2021. "Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation," Papers 2112.14748, arXiv.org, revised Jan 2023.
    6. Luo, Sida & Nie, Yu (Marco), 2020. "On the role of route choice modeling in transit sketchy design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 223-243.
    7. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    8. Li, Xin & Luo, Yue & Wang, Tianqi & Jia, Peng & Kuang, Haibo, 2020. "An integrated approach for optimizing bi-modal transit networks fed by shared bikes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Fan, Wenbo & Ran, Yu, 2021. "Planning skip-stop services with schedule coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    10. Qiu, Feng & Shen, Jinxing & Zhang, Xuechi & An, Chengchuan, 2015. "Demi-flexible operating policies to promote the performance of public transit in low-demand areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 215-230.
    11. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    12. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    13. (Edward) Kim, Myungseob & Levy, Joshua & Schonfeld, Paul, 2019. "Optimal zone sizes and headways for flexible-route bus services," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 67-81.
    14. Liu, Yining & Ouyang, Yanfeng, 2023. "Planning ride-pooling services with detour restrictions for spatially heterogeneous demand: A multi-zone queuing network approach," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    15. Chen, Peng Will & Nie, Yu Marco, 2017. "Analysis of an idealized system of demand adaptive paired-line hybrid transit," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 38-54.
    16. Rick Grahn & Sean Qian & Chris Hendrickson, 2023. "Optimizing first- and last-mile public transit services leveraging transportation network companies (TNC)," Transportation, Springer, vol. 50(5), pages 2049-2076, October.
    17. Wang, Yineng & Lin, Xi & He, Fang & Li, Meng, 2022. "Designing transit-oriented multi-modal transportation systems considering travelers’ choices," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 292-327.
    18. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    19. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    20. Mei, Yu & Gu, Weihua & Cassidy, Michael & Fan, Wenbo, 2021. "Planning skip-stop transit service under heterogeneous demands," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 503-523.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:23:y:2023:i:3:d:10.1007_s11067-022-09583-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.