IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.01467.html
   My bibliography  Save this paper

Quantum Pricing with a Smile: Implementation of Local Volatility Model on Quantum Computer

Author

Listed:
  • Kazuya Kaneko
  • Koichi Miyamoto
  • Naoyuki Takeda
  • Kazuyoshi Yoshino

Abstract

Applications of the quantum algorithm for Monte Carlo simulation to pricing of financial derivatives have been discussed in previous papers. However, up to now, the pricing model discussed in such papers is Black-Scholes model, which is important but simple. Therefore, it is motivating to consider how to implement more complex models used in practice in financial institutions. In this paper, we then consider the local volatility (LV) model, in which the volatility of the underlying asset price depends on the price and time. We present two types of implementation. One is the register-per-RN way, which is adopted in most of previous papers. In this way, each of random numbers (RNs) required to generate a path of the asset price is generated on a separated register, so the required qubit number increases in proportion to the number of RNs. The other is the PRN-on-a-register way, which is proposed in the author's previous work. In this way, a sequence of pseudo-random numbers (PRNs) generated on a register is used to generate paths of the asset price, so the required qubit number is reduced with a trade-off against circuit depth. We present circuit diagrams for these two implementations in detail and estimate required resources: qubit number and T-count.

Suggested Citation

  • Kazuya Kaneko & Koichi Miyamoto & Naoyuki Takeda & Kazuyoshi Yoshino, 2020. "Quantum Pricing with a Smile: Implementation of Local Volatility Model on Quantum Computer," Papers 2007.01467, arXiv.org.
  • Handle: RePEc:arx:papers:2007.01467
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.01467
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Bouland & Wim van Dam & Hamed Joorati & Iordanis Kerenidis & Anupam Prakash, 2020. "Prospects and challenges of quantum finance," Papers 2011.06492, arXiv.org.
    2. Jo~ao F. Doriguello & Alessandro Luongo & Jinge Bao & Patrick Rebentrost & Miklos Santha, 2021. "Quantum algorithm for stochastic optimal stopping problems with applications in finance," Papers 2111.15332, arXiv.org, revised Jul 2023.
    3. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    4. Dong An & Noah Linden & Jin-Peng Liu & Ashley Montanaro & Changpeng Shao & Jiasu Wang, 2020. "Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance," Papers 2012.06283, arXiv.org, revised Jun 2021.
    5. Vladimir Skavysh & Sofia Priazhkina & Diego Guala & Thomas Bromley, 2022. "Quantum Monte Carlo for Economics: Stress Testing and Macroeconomic Deep Learning," Staff Working Papers 22-29, Bank of Canada.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.01467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.