IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v28y2018i1p447-479.html
   My bibliography  Save this article

Convergence Of A Least†Squares Monte Carlo Algorithm For American Option Pricing With Dependent Sample Data

Author

Listed:
  • Daniel Z. Zanger

Abstract

We analyze the convergence of the Longstaff–Schwartz algorithm relying on only a single set of independent Monte Carlo sample paths that is repeatedly reused for all exercise time†steps. We prove new estimates on the stochastic component of the error of this algorithm whenever the approximation architecture is any uniformly bounded set of L2 functions of finite Vapnik–Chervonenkis dimension (VC†dimension), but in particular need not necessarily be either convex or closed. We also establish new overall error estimates, incorporating bounds on the approximation error as well, for certain nonlinear, nonconvex sets of neural networks.

Suggested Citation

  • Daniel Z. Zanger, 2018. "Convergence Of A Least†Squares Monte Carlo Algorithm For American Option Pricing With Dependent Sample Data," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 447-479, January.
  • Handle: RePEc:bla:mathfi:v:28:y:2018:i:1:p:447-479
    DOI: 10.1111/mafi.12125
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12125
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Z. Zanger, 2020. "General Error Estimates for the Longstaff–Schwartz Least-Squares Monte Carlo Algorithm," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 923-946, August.
    2. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    3. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    4. Christian Bayer & Ra'ul Tempone & Soren Wolfers, 2018. "Pricing American Options by Exercise Rate Optimization," Papers 1809.07300, arXiv.org, revised Aug 2019.
    5. Sérgio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys Souza, 2020. "Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1221-1255, September.
    6. Denis Belomestny & Maxim Kaledin & John Schoenmakers, 2020. "Semitractability of optimal stopping problems via a weighted stochastic mesh algorithm," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1591-1616, October.
    7. Hampus Engsner, 2021. "Least Squares Monte Carlo applied to Dynamic Monetary Utility Functions," Papers 2101.10947, arXiv.org, revised Apr 2021.
    8. Jo~ao F. Doriguello & Alessandro Luongo & Jinge Bao & Patrick Rebentrost & Miklos Santha, 2021. "Quantum algorithm for stochastic optimal stopping problems with applications in finance," Papers 2111.15332, arXiv.org, revised Jul 2023.
    9. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2024. "Leave‐one‐out least squares Monte Carlo algorithm for pricing Bermudan options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1404-1428, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:28:y:2018:i:1:p:447-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.