IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.11459.html
   My bibliography  Save this paper

Semi-nonparametric Estimation of Operational Risk Capital with Extreme Loss Events

Author

Listed:
  • Heng Z. Chen
  • Stephen R. Cosslett

Abstract

Bank operational risk capital modeling using the Basel II advanced measurement approach (AMA) often lead to a counter-intuitive capital estimate of value at risk at 99.9% due to extreme loss events. To address this issue, a flexible semi-nonparametric (SNP) model is introduced using the change of variables technique to enrich the family of distributions to handle extreme loss events. The SNP models are proved to have the same maximum domain of attraction (MDA) as the parametric kernels, and it follows that the SNP models are consistent with the extreme value theory peaks over threshold method but with different shape and scale parameters from the kernels. By using the simulation dataset generated from a mixture of distributions with both light and heavy tails, the SNP models in the Frechet and Gumbel MDAs are shown to fit the tail dataset satisfactorily through increasing the number of model parameters. The SNP model quantile estimates at 99.9 percent are not overly sensitive towards the body-tail threshold change, which is in sharp contrast to the parametric models. When applied to a bank operational risk dataset with three Basel event types, the SNP model provides a significant improvement in the goodness of fit to the two event types with heavy tails, yielding an intuitive capital estimate that is in the same magnitude as the event type total loss. Since the third event type does not have a heavy tail, the parametric model yields an intuitive capital estimate, and the SNP model cannot provide additional improvement. This research suggests that the SNP model may enable banks to continue with the AMA or its partial use to obtain an intuitive operational risk capital estimate when the simple non-model based Basic Indicator Approach or Standardized Approach are not suitable per Basel Committee Banking Supervision OPE10 (2019).

Suggested Citation

  • Heng Z. Chen & Stephen R. Cosslett, 2021. "Semi-nonparametric Estimation of Operational Risk Capital with Extreme Loss Events," Papers 2111.11459, arXiv.org, revised Jul 2022.
  • Handle: RePEc:arx:papers:2111.11459
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.11459
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6a, March.
    2. J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6b, March.
    3. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    4. Azamat Abdymomunov & Filippo Curti, 2020. "Quantifying and Stress Testing Operational Risk with Peer Banks’ Data," Journal of Financial Services Research, Springer;Western Finance Association, vol. 57(3), pages 287-313, June.
    5. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    6. Nataliya Horbenko & Peter Ruckdeschel & Taehan Bae, 2010. "Robust Estimation of Operational Risk," Papers 1012.0249, arXiv.org, revised Mar 2011.
    7. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaap H. Abbring & Tim Salimans, 2019. "The Likelihood of Mixed Hitting Times," Papers 1905.03463, arXiv.org, revised Apr 2021.
    2. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    3. Arkadiusz Szydlowski, 2015. "Endogenous Censoring in the Mixed Proportional Hazard Model with an Application to Optimal Unemployment Insurance," Discussion Papers in Economics 15/06, Division of Economics, School of Business, University of Leicester.
    4. Zincenko, Federico, 2018. "Nonparametric estimation of first-price auctions with risk-averse bidders," Journal of Econometrics, Elsevier, vol. 205(2), pages 303-335.
    5. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
    6. Cattaneo, Matias D. & Jansson, Michael & Newey, Whitney K., 2018. "Alternative Asymptotics And The Partially Linear Model With Many Regressors," Econometric Theory, Cambridge University Press, vol. 34(2), pages 277-301, April.
    7. Lee, Ying-Ying & Bhattacharya, Debopam, 2019. "Applied welfare analysis for discrete choice with interval-data on income," Journal of Econometrics, Elsevier, vol. 211(2), pages 361-387.
    8. Dutra, Renato Cabral Dias & Carpio, Lucio Guido Tapia, 2021. "Biodiesel auctions in Brazil: Symmetry of bids and informational paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Xiaohong Chen & Zhuo Huang & Yanping Yi, 2019. "Efficient Estimation of Multivariate Semi-nonparametric GARCH Filtered Copula Models," Cowles Foundation Discussion Papers 2215, Cowles Foundation for Research in Economics, Yale University.
    10. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    11. Ali Palali & Jan C. Van ours, 2017. "Love Conquers all but Nicotine: Spousal Peer Effects on the Decision to Quit Smoking," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 1710-1727, December.
    12. Hu Yingyao & Shum Matthew & Tan Wei & Xiao Ruli, 2017. "A Simple Estimator for Dynamic Models with Serially Correlated Unobservables," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-16, January.
    13. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    14. Michel Mouchart & Renzo Orsi, 2016. "Building a Structural Model: Parameterization and Structurality," Econometrics, MDPI, vol. 4(2), pages 1-16, April.
    15. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    16. Marmer, Vadim & Shneyerov, Artyom, 2012. "Quantile-based nonparametric inference for first-price auctions," Journal of Econometrics, Elsevier, vol. 167(2), pages 345-357.
    17. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    18. Thomas, Alban & Chakir, Raja, 2020. "Unintended consequences of environmental policies: the case of set-aside and agricultural intensification," TSE Working Papers 20-1066, Toulouse School of Economics (TSE).
    19. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    20. Olivier Brossard & Stéphanie Lavigne & Mustafa Erdem Sakinç, 2013. "Ownership structures and R&D in Europe: the good institutional investors, the bad and ugly impatient shareholders," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 22(4), pages 1031-1068, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.11459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.