IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.07005.html
   My bibliography  Save this paper

WaveCorr: Correlation-savvy Deep Reinforcement Learning for Portfolio Management

Author

Listed:
  • Saeed Marzban
  • Erick Delage
  • Jonathan Yumeng Li
  • Jeremie Desgagne-Bouchard
  • Carl Dussault

Abstract

The problem of portfolio management represents an important and challenging class of dynamic decision making problems, where rebalancing decisions need to be made over time with the consideration of many factors such as investors preferences, trading environments, and market conditions. In this paper, we present a new portfolio policy network architecture for deep reinforcement learning (DRL)that can exploit more effectively cross-asset dependency information and achieve better performance than state-of-the-art architectures. In particular, we introduce a new property, referred to as \textit{asset permutation invariance}, for portfolio policy networks that exploit multi-asset time series data, and design the first portfolio policy network, named WaveCorr, that preserves this invariance property when treating asset correlation information. At the core of our design is an innovative permutation invariant correlation processing layer. An extensive set of experiments are conducted using data from both Canadian (TSX) and American stock markets (S&P 500), and WaveCorr consistently outperforms other architectures with an impressive 3%-25% absolute improvement in terms of average annual return, and up to more than 200% relative improvement in average Sharpe ratio. We also measured an improvement of a factor of up to 5 in the stability of performance under random choices of initial asset ordering and weights. The stability of the network has been found as particularly valuable by our industrial partner.

Suggested Citation

  • Saeed Marzban & Erick Delage & Jonathan Yumeng Li & Jeremie Desgagne-Bouchard & Carl Dussault, 2021. "WaveCorr: Correlation-savvy Deep Reinforcement Learning for Portfolio Management," Papers 2109.07005, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:2109.07005
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.07005
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Li & Jialei Wang & Dingjiang Huang & Steven C. H. Hoi, 2018. "Transaction cost optimization for online portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1411-1424, August.
    2. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    3. Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    2. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    3. Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
    4. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    5. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    6. Yasuhiro Nakayama & Tomochika Sawaki, 2023. "Causal Inference on Investment Constraints and Non-stationarity in Dynamic Portfolio Optimization through Reinforcement Learning," Papers 2311.04946, arXiv.org.
    7. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    8. Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
    9. Michael Senescall & Rand Kwong Yew Low, 2024. "Quantitative Portfolio Management: Review and Outlook," Mathematics, MDPI, vol. 12(18), pages 1-25, September.
    10. Xiangyu Cui & Xun Li & Yun Shi & Si Zhao, 2023. "Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning," Papers 2312.15385, arXiv.org.
    11. Huanming Zhang & Zhengyong Jiang & Jionglong Su, 2021. "A Deep Deterministic Policy Gradient-based Strategy for Stocks Portfolio Management," Papers 2103.11455, arXiv.org.
    12. Kinyua, Johnson D. & Mutigwe, Charles & Cushing, Daniel J. & Poggi, Michael, 2021. "An analysis of the impact of President Trump’s tweets on the DJIA and S&P 500 using machine learning and sentiment analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    13. Yinheng Li & Junhao Wang & Yijie Cao, 2019. "A General Framework on Enhancing Portfolio Management with Reinforcement Learning," Papers 1911.11880, arXiv.org, revised Oct 2023.
    14. Zhaolu Dong & Shan Huang & Simiao Ma & Yining Qian, 2021. "Factor Representation and Decision Making in Stock Markets Using Deep Reinforcement Learning," Papers 2108.01758, arXiv.org.
    15. Zhenhan Huang & Fumihide Tanaka, 2021. "MSPM: A Modularized and Scalable Multi-Agent Reinforcement Learning-based System for Financial Portfolio Management," Papers 2102.03502, arXiv.org, revised Feb 2022.
    16. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    17. MohammadAmin Fazli & Mahdi Lashkari & Hamed Taherkhani & Jafar Habibi, 2022. "A Novel Experts Advice Aggregation Framework Using Deep Reinforcement Learning for Portfolio Management," Papers 2212.14477, arXiv.org.
    18. Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Time your hedge with Deep Reinforcement Learning," Papers 2009.14136, arXiv.org, revised Nov 2020.
    19. Ricard Durall, 2022. "Asset Allocation: From Markowitz to Deep Reinforcement Learning," Papers 2208.07158, arXiv.org.
    20. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.07005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.