IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i8p1411-1424.html
   My bibliography  Save this article

Transaction cost optimization for online portfolio selection

Author

Listed:
  • Bin Li
  • Jialei Wang
  • Dingjiang Huang
  • Steven C. H. Hoi

Abstract

To improve existing online portfolio selection strategies in the case of non-zero transaction costs, we propose a novel framework named Transaction Cost Optimization (TCO). The TCO framework incorporates the L1 norm of the difference between two consecutive allocations together with the principles of maximizing expected log return. We further solve the formulation via convex optimization, and obtain two closed-form portfolio update formulas, which follow the same principle as Proportional Portfolio Rebalancing (PPR) in industry. We empirically evaluate the proposed framework using four commonly used data-sets. Although these data-sets do not consider delisted firms and are thus subject to survival bias, empirical evaluations show that the proposed TCO framework may effectively handle reasonable transaction costs and improve existing strategies in the case of non-zero transaction costs.

Suggested Citation

  • Bin Li & Jialei Wang & Dingjiang Huang & Steven C. H. Hoi, 2018. "Transaction cost optimization for online portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1411-1424, August.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:8:p:1411-1424
    DOI: 10.1080/14697688.2017.1357831
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2017.1357831
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2017.1357831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin’an He & Shicheng Yin & Fangping Peng, 2024. "Weak aggregating specialist algorithm for online portfolio selection," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2405-2434, June.
    2. Kailin Xie & Jianfei Yin & Hengyong Yu & Hong Fu & Ying Chu, 2024. "Passive Aggressive Ensemble for Online Portfolio Selection," Mathematics, MDPI, vol. 12(7), pages 1-19, March.
    3. Guo, Sini & Gu, Jia-Wen & Fok, Christopher H. & Ching, Wai-Ki, 2023. "Online portfolio selection with state-dependent price estimators and transaction costs," European Journal of Operational Research, Elsevier, vol. 311(1), pages 333-353.
    4. Akhilesh KUMAR & Mohammad SHAHID, 2021. "Portfolio selection problem: Issues, challenges and future prospectus," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(4(629), W), pages 71-90, Winter.
    5. Seung-Hyun Moon & Yong-Hyuk Kim & Byung-Ro Moon, 2019. "Empirical investigation of state-of-the-art mean reversion strategies for equity markets," Papers 1909.04327, arXiv.org.
    6. Saeed Marzban & Erick Delage & Jonathan Yumeng Li & Jeremie Desgagne-Bouchard & Carl Dussault, 2021. "WaveCorr: Correlation-savvy Deep Reinforcement Learning for Portfolio Management," Papers 2109.07005, arXiv.org, revised Sep 2021.
    7. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    8. J. D. M. Yamim & C. C. H. Borges & R. F. Neto, 2023. "Portfolio Optimization Via Online Gradient Descent and Risk Control," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 361-381, June.
    9. Chung-Han Hsieh & Jie-Ling Lu, 2024. "On Accelerating Large-Scale Robust Portfolio Optimization," Papers 2408.07879, arXiv.org.
    10. Lyu, Benmeng & Wu, Boqian & Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2024. "Robust online portfolio optimization with cash flows," Omega, Elsevier, vol. 129(C).
    11. Seung-Hyun Moon & Yourim Yoon, 2022. "Genetic Mean Reversion Strategy for Online Portfolio Selection with Transaction Costs," Mathematics, MDPI, vol. 10(7), pages 1-20, March.
    12. Jin’an He & Fangping Peng & Xiuying Xie, 2024. "Risk-adjusted exponential gradient strategies for online portfolio selection," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-25, August.
    13. Michael Senescall & Rand Kwong Yew Low, 2024. "Quantitative Portfolio Management: Review and Outlook," Mathematics, MDPI, vol. 12(18), pages 1-25, September.
    14. Hongliu He & Hua Li, 2024. "A New Boosting Algorithm for Online Portfolio Selection Based on dynamic Time Warping and Anti-correlation," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1777-1803, May.
    15. Zhong, Yannan & Xu, Weijun & Li, Hongyi & Zhong, Weiwei, 2024. "Distributed mean reversion online portfolio strategy with stock network," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1143-1158.
    16. Damian Kisiel & Denise Gorse, 2021. "A Meta-Method for Portfolio Management Using Machine Learning for Adaptive Strategy Selection," Papers 2111.05935, arXiv.org.
    17. Yong Zhang & Hong Lin & Lina Zheng & Xingyu Yang, 2022. "Adaptive online portfolio strategy based on exponential gradient updates," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 672-696, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:8:p:1411-1424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.