IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.06349.html
   My bibliography  Save this paper

Arbitrage-free pricing of CVA for cross-currency swap with wrong-way risk under stochastic correlation modeling framework

Author

Listed:
  • Ashish Kumar
  • Laszlo Markus
  • Norbert Hari

Abstract

A positive correlation between exposure and counterparty credit risk gives rise to the so-called Wrong-Way Risk (WWR). Even after a decade of the financial crisis, addressing WWR in both sound and tractable ways remains challenging. Academicians have proposed arbitrage-free set-ups through copula methods but those are computationally expensive and hard to use in practice. Resampling methods are proposed by the industry but they lack mathematical foundations. The purpose of this article is to bridge this gap between the approaches used by academicians and industry. To this end, we propose a stochastic correlation approach to asses WWR. The methods based on constant correlation to model the dependency between exposure and counterparty credit risk assume a linear dependency, thus fail to capture the tail dependence. Using a stochastic correlation we move further away from the Gaussian copula and can capture the tail risk. This effect is reflected in the results where the impact of stochastic correlation on calculated CVA is substantial when compared to the case when a high constant correlation is assumed between exposure and credit. Given the uncertainty inherent to CVA, the proposed method is believed to provide a promising way to model WWR.

Suggested Citation

  • Ashish Kumar & Laszlo Markus & Norbert Hari, 2021. "Arbitrage-free pricing of CVA for cross-currency swap with wrong-way risk under stochastic correlation modeling framework," Papers 2107.06349, arXiv.org.
  • Handle: RePEc:arx:papers:2107.06349
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.06349
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. BRIGO, Damiano & VRINS, Frédéric, 2018. "Disentangling wrong-way risk: pricing credit valuation adjustment via change of measures," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1154-1164.
    2. Samples, John, 2006. "The Fallacy of Campaign Finance Reform," University of Chicago Press Economics Books, University of Chicago Press, number 9780226734507, December.
    3. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Cieslak & Pavol Povala, 2016. "Information in the Term Structure of Yield Curve Volatility," Journal of Finance, American Finance Association, vol. 71(3), pages 1393-1436, June.
    2. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    3. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    4. Alexander Philipov & Mark Glickman, 2006. "Factor Multivariate Stochastic Volatility via Wishart Processes," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 311-334.
    5. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    6. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    7. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    8. Chiu, Mei Choi & Wong, Hoi Ying & Zhao, Jing, 2015. "Commodity derivatives pricing with cointegration and stochastic covariances," European Journal of Operational Research, Elsevier, vol. 246(2), pages 476-486.
    9. Laruelle Sophie & Pagès Gilles, 2012. "Stochastic approximation with averaging innovation applied to Finance," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 1-51, January.
    10. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    11. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    12. Monfort, Alain & Pegoraro, Fulvio, 2012. "Asset pricing with Second-Order Esscher Transforms," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1678-1687.
    13. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    14. Pan, Zhiyuan & Xiao, Dongli & Dong, Qingma & Liu, Li, 2022. "Structural breaks, macroeconomic fundamentals and cross hedge ratio," Finance Research Letters, Elsevier, vol. 47(PA).
    15. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2015. "Intra-daily volatility spillovers in international stock markets," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 95-114.
    16. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    17. Gourieroux, C. & Monfort, A. & Sufana, R., 2010. "International money and stock market contingent claims," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1727-1751, December.
    18. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    19. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
    20. Eduardo Abi Jaber, 2020. "The Laplace transform of the integrated Volterra Wishart process," Working Papers hal-02367200, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.06349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.