IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.04636.html
   My bibliography  Save this paper

Automatically Differentiable Random Coefficient Logistic Demand Estimation

Author

Listed:
  • Andrew Chia

Abstract

We show how the random coefficient logistic demand (BLP) model can be phrased as an automatically differentiable moment function, including the incorporation of numerical safeguards proposed in the literature. This allows gradient-based frequentist and quasi-Bayesian estimation using the Continuously Updating Estimator (CUE). Drawing from the machine learning literature, we outline hitherto under-utilized best practices in both frequentist and Bayesian estimation techniques. Our Monte Carlo experiments compare the performance of CUE, 2S-GMM, and LTE estimation. Preliminary findings indicate that the CUE estimated using LTE and frequentist optimization has a lower bias but higher MAE compared to the traditional 2-Stage GMM (2S-GMM) approach. We also find that using credible intervals from MCMC sampling for the non-linear parameters together with frequentist analytical standard errors for the concentrated out linear parameters provides empirical coverage closest to the nominal level. The accompanying admest Python package provides a platform for replication and extensibility.

Suggested Citation

  • Andrew Chia, 2021. "Automatically Differentiable Random Coefficient Logistic Demand Estimation," Papers 2106.04636, arXiv.org.
  • Handle: RePEc:arx:papers:2106.04636
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.04636
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuowen Chen & Victor Chernozhukov & Iván Fernández-Val, 2019. "Mastering Panel Metrics: Causal Impact of Democracy on Growth," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 77-82, May.
    2. Jean‐Pierre Dubé & Jeremy T. Fox & Che‐Lin Su, 2012. "Improving the Numerical Performance of Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation," Econometrica, Econometric Society, vol. 80(5), pages 2231-2267, September.
    3. Igal Hendel & Aviv Nevo, 2006. "Sales and consumer inventory," RAND Journal of Economics, RAND Corporation, vol. 37(3), pages 543-561, September.
    4. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    5. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    6. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    7. Whitney K. Newey & Frank Windmeijer, 2009. "Generalized Method of Moments With Many Weak Moment Conditions," Econometrica, Econometric Society, vol. 77(3), pages 687-719, May.
    8. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 437-483, June.
    9. Han Hong, 2007. "A Statistical Inquiry into the Plausibility of Recursive Utility," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 523-559, Fall.
    10. Igal Hendel & Aviv Nevo, 2006. "Sales and Consumer Inventory," RAND Journal of Economics, The RAND Corporation, vol. 37(3), pages 543-561, Autumn.
    11. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
    12. Donald, Stephen G. & Newey, Whitney K., 2000. "A jackknife interpretation of the continuous updating estimator," Economics Letters, Elsevier, vol. 67(3), pages 239-243, June.
    13. W. Ross Morrow & Steven J. Skerlos, 2011. "Fixed-Point Approaches to Computing Bertrand-Nash Equilibrium Prices Under Mixed-Logit Demand," Operations Research, INFORMS, vol. 59(2), pages 328-345, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    2. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
    3. Takeshi Fukasawa, 2022. "The Biases in Applying Static Demand Models under Dynamic Demand," Discussion Paper Series DP2022-18, Research Institute for Economics & Business Administration, Kobe University, revised Jul 2022.
    4. Greg Lewis & Bora Ozaltun & Georgios Zervas, 2021. "Maximum Likelihood Estimation of Differentiated Products Demand Systems," Papers 2111.12397, arXiv.org.
    5. Miravete, Eugenio & Seim, Katja & Thurk, Jeff, 2013. "Complexity, Efficiency, and Fairness of Multi-Product Monopoly Pricing," CEPR Discussion Papers 9641, C.E.P.R. Discussion Papers.
    6. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    7. Eugenio J. Miravete & Katja Seim & Jeff Thurk, 2018. "Market Power and the Laffer Curve," Econometrica, Econometric Society, vol. 86(5), pages 1651-1687, September.
    8. Jeff Thurk, 2015. "Measuring the Unequal Implications of One Size Fits All Regulation," 2015 Meeting Papers 1251, Society for Economic Dynamics.
    9. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    10. Eugenio J. Miravete & Katja Seim & Jeff Thurk, 2020. "One Markup to Rule Them All: Taxation by Liquor Pricing Regulation," American Economic Journal: Microeconomics, American Economic Association, vol. 12(1), pages 1-41, February.
    11. Matthew Backus & Christopher Conlon & Michael Sinkinson, 2021. "Common Ownership and Competition in the Ready-to-Eat Cereal Industry," NBER Working Papers 28350, National Bureau of Economic Research, Inc.
    12. Junpei Komiyama & Hajime Shimao, 2018. "Cross Validation Based Model Selection via Generalized Method of Moments," Papers 1807.06993, arXiv.org.
    13. Hong, Han & Li, Huiyu & Li, Jessie, 2021. "BLP estimation using Laplace transformation and overlapping simulation draws," Journal of Econometrics, Elsevier, vol. 222(1), pages 56-72.
    14. Freyberger, Joachim, 2015. "Asymptotic theory for differentiated products demand models with many markets," Journal of Econometrics, Elsevier, vol. 185(1), pages 162-181.
    15. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    16. Andrew Sweeting, 2007. "Dynamic Product Repositioning in Differentiated Product Markets: The Case of Format Switching in the Commercial Radio Industry," NBER Working Papers 13522, National Bureau of Economic Research, Inc.
    17. Stépahne Auray & Nicolas Lepage-Saucier & Purevdorj Tuvaandor, 2018. "Doubly Robust GMM Inference and Differentiated Products Demand Models," Working Papers 2018-13, Center for Research in Economics and Statistics.
    18. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    19. Aguirregabiria, Victor & Ho, Chun-Yu, 2012. "A dynamic oligopoly game of the US airline industry: Estimation and policy experiments," Journal of Econometrics, Elsevier, vol. 168(1), pages 156-173.
    20. Nano Barahona & Cristóbal Otero & Sebastián Otero, 2023. "Equilibrium Effects of Food Labeling Policies," Econometrica, Econometric Society, vol. 91(3), pages 839-868, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.04636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.