IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.09473.html
   My bibliography  Save this paper

Dependence Modeling and Risk Assessment of a Financial Portfolio with ARMA-APARCH-EVT models based on HACs

Author

Listed:
  • Dodo Natatou Moutari
  • Hassane Abba Mallam
  • Diakarya Barro
  • Bisso Saley

Abstract

This study aims to widen the sphere of pratical applicability of the HAC model combined with the ARMA-APARCH volatility forecast model and the extreme values theory. A sequential process of modeling of the VaR of a portfolio based on the ARMA-APARCH-EVT-HAC model was discussed. The empirical analysis conducted with data from international stock market indices clearly illustrates the performance and accuracy of modeling based on HACs.

Suggested Citation

  • Dodo Natatou Moutari & Hassane Abba Mallam & Diakarya Barro & Bisso Saley, 2021. "Dependence Modeling and Risk Assessment of a Financial Portfolio with ARMA-APARCH-EVT models based on HACs," Papers 2105.09473, arXiv.org.
  • Handle: RePEc:arx:papers:2105.09473
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.09473
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hofert, Marius & Maechler, Martin, 2011. "Nested Archimedean Copulas Meet R: The nacopula Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i09).
    2. Y. Zhang & S. Nadarajah, 2018. "A review of backtesting for value at risk," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(15), pages 3616-3639, August.
    3. Martin Burda & Louis Belisle, 2019. "Copula Multivariate GARCH Model with Constrained Hamiltonian Monte Carlo," Working Papers tecipa-638, University of Toronto, Department of Economics.
    4. Burda Martin & Bélisle Louis, 2019. "Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo," Dependence Modeling, De Gruyter, vol. 7(1), pages 133-149, January.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Jiang, Cuixia & Ding, Xiaoyi & Xu, Qifa & Tong, Yongbo, 2020. "A TVM-Copula-MIDAS-GARCH model with applications to VaR-based portfolio selection," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    7. David Ardia & Kris Boudt & Leopoldo Catania, 2016. "Value-at-Risk Prediction in R with the GAS Package," Papers 1611.06010, arXiv.org.
    8. Hofert, Marius, 2008. "Sampling Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5163-5174, August.
    9. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    10. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    11. Sahamkhadam, Maziar & Stephan, Andreas & Östermark, Ralf, 2018. "Portfolio optimization based on GARCH-EVT-Copula forecasting models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 497-506.
    12. Thorsten Thadewald & Herbert Buning, 2007. "Jarque-Bera Test and its Competitors for Testing Normality - A Power Comparison," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 87-105.
    13. Diers, Dorothea & Eling, Martin & Marek, Sebastian D., 2012. "Dependence modeling in non-life insurance using the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 430-436.
    14. Neumeyer, Natalie & Omelka, Marek & Hudecová, Šárka, 2019. "A copula approach for dependence modeling in multivariate nonparametric time series," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    2. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.
    3. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    4. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    5. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    6. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    7. Nathan Uyttendaele, 2018. "On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison," Computational Statistics, Springer, vol. 33(2), pages 1047-1070, June.
    8. Mai Jan-Frederik, 2019. "Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case," Dependence Modeling, De Gruyter, vol. 7(1), pages 202-214, January.
    9. Jiang, Yifu & Olmo, Jose & Atwi, Majed, 2024. "Dynamic robust portfolio selection under market distress," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    10. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev, 2023. "Enhancing CVaR portfolio optimisation performance with GAM factor models," Papers 2401.00188, arXiv.org.
    11. Bedoui, Rihab & Braeik, Sana & Goutte, Stéphane & Guesmi, Khaled, 2018. "On the study of conditional dependence structure between oil, gold and USD exchange rates," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 134-146.
    12. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
    13. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
    14. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    15. Enrico Bernardi & Silvia Romagnoli, 2016. "Distorted Copula-Based Probability Distribution of a Counting Hierarchical Variable: A Credit Risk Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 285-310, March.
    16. Uyttendaele, Nathan, 2016. "On the estimation of nested Archimedean copulas: A theoretical and an experimental comparison," LIDAM Discussion Papers ISBA 2016005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Yang Zhao & Charalampos Stasinakis & Georgios Sermpinis & Filipa Da Silva Fernandes, 2019. "Revisiting Fama–French factors' predictability with Bayesian modelling and copula‐based portfolio optimization," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1443-1463, October.
    18. Rewat Khanthaporn, 2022. "Analysis of Nonlinear Comovement of Benchmark Thai Government Bond Yields," PIER Discussion Papers 183, Puey Ungphakorn Institute for Economic Research.
    19. Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.09473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.