IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.01040.html
   My bibliography  Save this paper

Distributional Offline Continuous-Time Reinforcement Learning with Neural Physics-Informed PDEs (SciPhy RL for DOCTR-L)

Author

Listed:
  • Igor Halperin

Abstract

This paper addresses distributional offline continuous-time reinforcement learning (DOCTR-L) with stochastic policies for high-dimensional optimal control. A soft distributional version of the classical Hamilton-Jacobi-Bellman (HJB) equation is given by a semilinear partial differential equation (PDE). This `soft HJB equation' can be learned from offline data without assuming that the latter correspond to a previous optimal or near-optimal policy. A data-driven solution of the soft HJB equation uses methods of Neural PDEs and Physics-Informed Neural Networks developed in the field of Scientific Machine Learning (SciML). The suggested approach, dubbed `SciPhy RL', thus reduces DOCTR-L to solving neural PDEs from data. Our algorithm called Deep DOCTR-L converts offline high-dimensional data into an optimal policy in one step by reducing it to supervised learning, instead of relying on value iteration or policy iteration methods. The method enables a computable approach to the quality control of obtained policies in terms of both their expected returns and uncertainties about their values.

Suggested Citation

  • Igor Halperin, 2021. "Distributional Offline Continuous-Time Reinforcement Learning with Neural Physics-Informed PDEs (SciPhy RL for DOCTR-L)," Papers 2104.01040, arXiv.org.
  • Handle: RePEc:arx:papers:2104.01040
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.01040
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eleonora Bennati & Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach To Derivative Security Pricing I: Formalism And Analytical Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 381-407.
    2. Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach to Derivative Security Pricing: I. Formalism and Analytical Results," Papers cond-mat/9901277, arXiv.org.
    3. Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach to Derivative Security Pricing: II. Numerical Methods," Papers cond-mat/9901279, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moore, Ryleigh A. & Narayan, Akil, 2022. "Adaptive density tracking by quadrature for stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    2. Zura Kakushadze, 2014. "Path Integral and Asset Pricing," Papers 1410.1611, arXiv.org, revised Aug 2016.
    3. Paolinelli, Giovanni & Arioli, Gianni, 2018. "A path integral based model for stocks and order dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 387-399.
    4. G., Mauricio Contreras & Peña, Juan Pablo, 2019. "The quantum dark side of the optimal control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 450-473.
    5. Andrew Matacz, 2000. "Path Dependent Option Pricing: the path integral partial averaging method," Papers cond-mat/0005319, arXiv.org.
    6. Andrew Matacz, 2000. "Path dependent option pricing: the path integral partial averaging method," Science & Finance (CFM) working paper archive 500034, Science & Finance, Capital Fund Management.
    7. Giovanni Paolinelli & Gianni Arioli, 2018. "A model for stocks dynamics based on a non-Gaussian path integral," Papers 1809.01342, arXiv.org, revised Oct 2018.
    8. Paolinelli, Giovanni & Arioli, Gianni, 2019. "A model for stocks dynamics based on a non-Gaussian path integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 499-514.
    9. Yu. A. Kuperin & P. A. Poloskov, 2010. "American Options Pricing under Stochastic Volatility: Approximation of the Early Exercise Surface and Monte Carlo Simulations," Papers 1009.5495, arXiv.org.
    10. Yu. A. Kuperin & P. A. Poloskov, 2010. "Analytical and Numerical Approaches to Pricing the Path-Dependent Options with Stochastic Volatility," Papers 1009.4587, arXiv.org.
    11. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo, 2017. "Dynamic optimization and its relation to classical and quantum constrained systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 12-25.
    12. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2006. "A path integral approach to asset-liability management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 404-416.
    13. Ingber, Lester, 2000. "High-resolution path-integral development of financial options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 529-558.
    14. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    15. Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of outside barrier Asian options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 266-276.
    16. Montagna, Guido & Nicrosini, Oreste & Moreni, Nicola, 2002. "A path integral way to option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(3), pages 450-466.
    17. Marco Rosa-Clot & Stefano Taddei, 2002. "A Path Integral Approach To Derivative Security Pricing Ii: Numerical Methods," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 123-146.
    18. L. Ingber & C. Chen & R.P. Mondescu & D. Muzzall & M. Renedo, 2001. "Probability tree algorithm for general diffusion processes," Lester Ingber Papers 01pt, Lester Ingber.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.01040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.