IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v448y2016icp248-253.html
   My bibliography  Save this article

On the choice of GARCH parameters for efficient modelling of real stock price dynamics

Author

Listed:
  • Pokhilchuk, K.A.
  • Savel’ev, S.E.

Abstract

We propose two different methods for optimal choice of GARCH(1,1) parameters for the efficient modelling of stock prices by using a particular return series. Using (as an example) stock return data for Intel Corporation, we vary parameters to fit the average volatility as well as fourth (linked to kurtosis of data) and eighth statistical moments and observe pure convergence of our simulated eighth moment to the stock data. Results indicate that fitting higher-order moments of a return series might not be an optimal approach for choosing GARCH parameters. In contrast, the simulated exponent of the Fourier spectrum decay is much less noisy and can easily fit the corresponding decay of the empirical Fourier spectrum of the used return series of Intel stock, allowing us to efficiently define all GARCH parameters. We compare the estimates of GARCH parameters obtained by fitting price data Fourier spectra with the ones obtained from standard software packages and conclude that the obtained estimates here are deeper in the stability region of parameters. Thus, the proposed method of using Fourier spectra of stock data to estimate GARCH parameters results in a more robust and stable stochastic process but with a shorter characteristic autocovariance time.

Suggested Citation

  • Pokhilchuk, K.A. & Savel’ev, S.E., 2016. "On the choice of GARCH parameters for efficient modelling of real stock price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 248-253.
  • Handle: RePEc:eee:phsmap:v:448:y:2016:i:c:p:248-253
    DOI: 10.1016/j.physa.2015.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115010742
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, September.
    2. Constantinides, A. & Savel’ev, S.E., 2013. "Modelling price dynamics: A hybrid truncated Lévy Flight–GARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2072-2078.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    5. R. N. Onody & G. M. Favaro & E. R. Cazaroto, 2007. "A new estimator method for GARCH models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(4), pages 487-493, June.
    6. Afees A. Salisu & Ismail O. Fasanya, 2012. "Comparative Performance of Volatility Models for Oil Price," International Journal of Energy Economics and Policy, Econjournals, vol. 2(3), pages 167-183.
    7. Anders Wilhelmsson, 2006. "Garch forecasting performance under different distribution assumptions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 561-578.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Clerk, Luke & Savel’ev, Sergey, 2022. "AI algorithms for fitting GARCH parameters to empirical financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Luke De Clerk & Sergey Savel'ev, 2021. "Non-stationary GARCH modelling for fitting higher order moments of financial series within moving time windows," Papers 2102.11627, arXiv.org, revised Mar 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veysel Ulusoy & Caner zdurak, 2018. "The Impact of Oil Price Volatility to Oil and Gas Company Stock Returns and Emerging Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 8(1), pages 144-158.
    2. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    3. Siddiqi, Hammad, 2007. "Rational Interacting Agents and Volatility Clustering: A New Approach," MPRA Paper 2984, University Library of Munich, Germany.
    4. Allen, David E. & Amram, Ron & McAleer, Michael, 2013. "Volatility spillovers from the Chinese stock market to economic neighbours," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 238-257.
    5. Shehu Usman Rano, Aliyu, 2010. "Does inflation has an Impact on Stock Returns and Volatility? Evidence from Nigeria and Ghana," MPRA Paper 30091, University Library of Munich, Germany, revised 19 Mar 2011.
    6. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    7. Erdal Demirhan & Banu Demirhan, 2015. "The Dynamic Effect of ExchangeRate Volatility on Turkish Exports: Parsimonious Error-Correction Model Approach," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(4), pages 429-451, September.
    8. Suripto & Supriyanto, 2021. "The Effect of the COVID-19 Pandemic on Stock Prices with the Event Window Approach: A Case Study of State Gas Companies, in the Energy Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 155-162.
    9. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    10. Abdmoulah, Walid, 2010. "Testing the evolving efficiency of Arab stock markets," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 25-34, January.
    11. Marcin Chlebus, 2016. "Can Lognormal, Weibull or Gamma Distributions Improve the EWS-GARCH Value-at-Risk Forecasts?," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 4, pages 329-350, University of Lodz.
    12. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    13. Buczyński Mateusz & Chlebus Marcin, 2018. "Comparison of Semi-Parametric and Benchmark Value-At-Risk Models in Several Time Periods with Different Volatility Levels," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(2), pages 67-82, June.
    14. Allison Roehling, 2021. "Implications of exchange rate volatility for trade: Volatility measurement matters," Review of International Economics, Wiley Blackwell, vol. 29(5), pages 1486-1523, November.
    15. Oberndorfer, Ulrich & Schmidt, Peter & Wagner, Marcus & Ziegler, Andreas, 2013. "Does the stock market value the inclusion in a sustainability stock index? An event study analysis for German firms," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 497-509.
    16. Show-Lin Chen & Nen-Jing Chen & Rwei-Ju Chuang, 2014. "An empirical study on technical analysis: GARCH (1, 1) model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 785-801, April.
    17. Doyle, John R. & Chen, Catherine Huirong, 2009. "The wandering weekday effect in major stock markets," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1388-1399, August.
    18. Shcherba, Alexandr, 2012. "Market risk valuation modeling for the European countries at the financial crisis of 2008," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 27(3), pages 20-35.
    19. Sintim-Aboagye, Hermann, 2013. "Imf And World Bank Economic Programs On Inflation: Relevance To Nepad," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 9(1-2), January.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:448:y:2016:i:c:p:248-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.