IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v41y2021i8p1220-1240.html
   My bibliography  Save this article

Smile‐implied hedging with volatility risk

Author

Listed:
  • Pascal François
  • Lars Stentoft

Abstract

Options can be dynamically replicated using model‐free Greeks extracted from the volatility smile. However, smile‐implied delta and delta–gamma hedging do not achieve minimum variance in the presence of price–volatility correlation, and these strategies have shown poor performance relative to the Black–Scholes (BS) benchmark. We propose a way to extend smile‐implied option replication with volatility risk management. Large‐scale evidence on S&P 500 index options indicates that smile‐implied delta–gamma–vega hedging strategies outperform the BS approach as well as more sophisticated option hedging frameworks, including stochastic volatility and jumps.

Suggested Citation

  • Pascal François & Lars Stentoft, 2021. "Smile‐implied hedging with volatility risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1220-1240, August.
  • Handle: RePEc:wly:jfutmk:v:41:y:2021:i:8:p:1220-1240
    DOI: 10.1002/fut.22191
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22191
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    2. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    3. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
    4. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    5. U. Çetin & R. Jarrow & P. Protter & M. Warachka, 2008. "Pricing Options in an Extended Black Scholes Economy with Illiquidity: Theory and Empirical Evidence," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 9, pages 185-221, World Scientific Publishing Co. Pte. Ltd..
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Nicole Branger & Eva Krautheim & Christian Schlag & Norman Seeger, 2012. "Hedging under model misspecification: All risk factors are equal, but some are more equal than others …," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(5), pages 397-430, May.
    8. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    9. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    10. Joshua D. Coval & Tyler Shumway, 2001. "Expected Option Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 983-1009, June.
    11. Muravyev, Dmitriy & Ni, Xuechuan (Charles), 2020. "Why do option returns change sign from day to night?," Journal of Financial Economics, Elsevier, vol. 136(1), pages 219-238.
    12. Haynes H. M. Yung & Hua Zhang, 2003. "An empirical investigation of the GARCH option pricing model: Hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(12), pages 1191-1207, December.
    13. Nicolae Garleanu & Lasse Heje Pedersen & Allen M. Poteshman, 2009. "Demand-Based Option Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 22(10), pages 4259-4299, October.
    14. Nathan Lassance & Frédéric Vrins, 2018. "A comparison of pricing and hedging performances of equity derivatives models," Applied Economics, Taylor & Francis Journals, vol. 50(10), pages 1122-1137, February.
    15. Bates, David S., 2005. "Hedging the smirk," Finance Research Letters, Elsevier, vol. 2(4), pages 195-200, December.
    16. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    17. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    18. Carol Alexander & Andreas Kaeck & Leonardo M. Nogueira, 2009. "Model risk adjusted hedge ratios," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(11), pages 1021-1049, November.
    19. Oleg Bondarenko, 2014. "Why Are Put Options So Expensive?," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-50.
    20. Robert Savickas, 2005. "Evidence On Delta Hedging And Implied Volatilities For The Black‐Scholes, Gamma, And Weibull Option Pricing Models," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(2), pages 299-317, June.
    21. Boyle, Phelim P. & Emanuel, David, 1980. "Discretely adjusted option hedges," Journal of Financial Economics, Elsevier, vol. 8(3), pages 259-282, September.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    24. Hull, John & White, Alan, 2017. "Optimal delta hedging for options," Journal of Banking & Finance, Elsevier, vol. 82(C), pages 180-190.
    25. Lindström, Erik & Ströjby, Jonas & Brodén, Mats & Wiktorsson, Magnus & Holst, Jan, 2008. "Sequential calibration of options," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2877-2891, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    3. George M. Constantinides & Michal Czerwonko & Stylianos Perrakis, 2020. "Mispriced index option portfolios," Financial Management, Financial Management Association International, vol. 49(2), pages 297-330, June.
    4. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    5. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    6. Peter Carr & Liuren Wu, 2020. "Option Profit and Loss Attribution and Pricing: A New Framework," Journal of Finance, American Finance Association, vol. 75(4), pages 2271-2316, August.
    7. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    8. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    9. Peter Christoffersen & Ruslan Goyenko & Kris Jacobs & Mehdi Karoui, 2018. "Illiquidity Premia in the Equity Options Market," The Review of Financial Studies, Society for Financial Studies, vol. 31(3), pages 811-851.
    10. Jitka Hilliard & Wei Li, 2014. "Volatilities implied by price changes in the S&P 500 options and futures contracts," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 599-626, May.
    11. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    12. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    13. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    14. Ben Boukai, 2021. "On the RND under Heston's stochastic volatility model," Papers 2101.03626, arXiv.org.
    15. Ben Boukai, 2021. "The Generalized Gamma distribution as a useful RND under Heston's stochastic volatility model," Papers 2108.07937, arXiv.org, revised Aug 2021.
    16. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    17. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    18. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    19. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    20. Hilliard, Jitka, 2013. "Testing Greeks and price changes in the S&P 500 options and futures contract: A regression analysis," International Review of Financial Analysis, Elsevier, vol. 26(C), pages 51-58.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:41:y:2021:i:8:p:1220-1240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.