IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v56y2021ics1062940820302102.html
   My bibliography  Save this article

Sample average approximation of CVaR-based hedging problem with a deep-learning solution

Author

Listed:
  • Peng, Cheng
  • Li, Shuang
  • Zhao, Yanlong
  • Bao, Ying

Abstract

Conditional Value-at-Risk (CVaR) is an extremely popular risk measure in finance and is usually optimized to reduce the risk of large losses. This paper considers the CVaR optimization problem for hedging a portfolio of derivatives with bounded constraints. We focus on minimizing the CVaR of the loss of the hedging portfolio by a deep learning solution because of its promising application to classic portfolio optimization. As the cost objective function in the deep learning framework, the CVaR does not have a closed-form expression, but it can be estimated by using the i.i.d samples average approximation method. While many works have adopted minimizing the estimated CVaR to obtain the optimal solution, they lack theoretical performance guarantees for sample-based solutions. This paper attempts to bridge this gap. On the one hand, we introduce a typical deep neural network architecture for training the optimal hedging strategies, which helps us to analyze the properties of function set for this neural network. On the other hand, we offer a sufficient condition to guarantee that the optimal strategies obtained by using the estimated CVaR can be assured in practical applications. In particular, we prove that the uniform convergence in probability of the estimated CVaR to CVaR over a set of functions, which are generated by the proposed deep neural network. Numerical experiments verify the proposed sufficient condition and demonstrate the feasibility and superiority of this approach.

Suggested Citation

  • Peng, Cheng & Li, Shuang & Zhao, Yanlong & Bao, Ying, 2021. "Sample average approximation of CVaR-based hedging problem with a deep-learning solution," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
  • Handle: RePEc:eee:ecofin:v:56:y:2021:i:c:s1062940820302102
    DOI: 10.1016/j.najef.2020.101325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940820302102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2020.101325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    3. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2002. "CVaR models with selective hedging for international asset allocation," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1535-1561, July.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Xue, Weili & Ma, Lijun & Shen, Houcai, 2015. "Optimal inventory and hedging decisions with CVaR consideration," International Journal of Production Economics, Elsevier, vol. 162(C), pages 70-82.
    6. Melnikov, Alexander & Smirnov, Ivan, 2012. "Dynamic hedging of conditional value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 182-190.
    7. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    8. Hull, John & White, Alan, 2017. "Optimal delta hedging for options," Journal of Banking & Finance, Elsevier, vol. 82(C), pages 180-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horikawa, Hiroaki & Nakagawa, Kei, 2024. "Relationship between deep hedging and delta hedging: Leveraging a statistical arbitrage strategy," Finance Research Letters, Elsevier, vol. 62(PA).
    2. Shi, Ruoshi & Zhao, Yanlong & Bao, Ying & Peng, Cheng, 2022. "Sensitivity-based Conditional Value at Risk (SCVaR): An efficient measurement of credit exposure for options," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    2. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Perrakis, Stylianos & Lefoll, Jean, 2000. "Option pricing and replication with transaction costs and dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1527-1561, October.
    5. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    6. Joao Amaro de Matos & Paula Antao, 2000. "Market illiquidity and the Bid-Ask spread of derivatives," Nova SBE Working Paper Series wp386, Universidade Nova de Lisboa, Nova School of Business and Economics.
    7. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    8. Entrop, Oliver & Fischer, Georg, 2019. "Hedging costs and joint determinants of premiums and spreads in structured financial products," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-34-19, University of Passau, Faculty of Business and Economics.
    9. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    10. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    11. Raymond Chiang & John Okunev & Mark Tippett, 1997. "Stochastic interest rates, transaction costs, and immunizing foreign currency risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(5), pages 579-598, August.
    12. Zhao, Yonggan & Ziemba, William T., 2007. "Hedging errors with Leland's option model in the presence of transaction costs," Finance Research Letters, Elsevier, vol. 4(1), pages 49-58, March.
    13. Zoran Stoiljkovic, 2023. "Applying Reinforcement Learning to Option Pricing and Hedging," Papers 2310.04336, arXiv.org.
    14. Fischer, Georg, 2019. "How dynamic hedging affects stock price movements: Evidence from German option and certificate markets," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-35-19, University of Passau, Faculty of Business and Economics.
    15. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    16. Oliver Entrop & Georg Fischer, 2020. "Hedging costs and joint determinants of premiums and spreads in structured financial products," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1049-1071, July.
    17. Nicola Cantarutti & Jo~ao Guerra & Manuel Guerra & Maria do Ros'ario Grossinho, 2016. "Option pricing in exponential L\'evy models with transaction costs," Papers 1611.00389, arXiv.org, revised Nov 2019.
    18. Villinski, Michele T., 2003. "A Methodology For Valuing Multiple-Exercise Option Contracts For Water," Working Papers 14379, University of Minnesota, Center for International Food and Agricultural Policy.
    19. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2021. "Market Complete Option Valuation using a Jarrow-Rudd Pricing Tree with Skewness and Kurtosis," Papers 2106.09128, arXiv.org.
    20. Barr, Kanlaya Jintanakul, 2009. "The implied volatility bias and option smile: is there a simple explanation?," ISU General Staff Papers 200901010800002026, Iowa State University, Department of Economics.

    More about this item

    Keywords

    Conditional Value-at-Risk; Hedging strategies; Deep learning; Theoretical guarantee; Sample average approximation; Uniform convergence;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:56:y:2021:i:c:s1062940820302102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.