IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.09937.html
   My bibliography  Save this paper

Estimating and backtesting risk under heavy tails

Author

Listed:
  • Marcin Pitera
  • Thorsten Schmidt

Abstract

While the {estimation} of risk is an important question in the daily business of banking and insurance, many existing plug-in estimation procedures suffer from an unnecessary bias. This often leads to the underestimation of risk and negatively impacts backtesting results, especially in small sample cases. In this article we show that the link between estimation bias and backtesting can be traced back to the dual relationship between risk measures and the corresponding performance measures, and discuss this in reference to value-at-risk, expected shortfall and expectile value-at-risk. Motivated by the consistent underestimation of risk by plug-in procedures, we propose a new algorithm for bias correction and show how to apply it for generalized Pareto distributions to the i.i.d. setting and to a GARCH(1,1) time series. In particular, we show that the application of our algorithm leads to gain in efficiency when heavy tails or heteroscedasticity exists in the data.

Suggested Citation

  • Marcin Pitera & Thorsten Schmidt, 2020. "Estimating and backtesting risk under heavy tails," Papers 2010.09937, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:2010.09937
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.09937
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    2. Tobias Fissler & Johanna F. Ziegel & Tilmann Gneiting, 2015. "Expected Shortfall is jointly elicitable with Value at Risk - Implications for backtesting," Papers 1507.00244, arXiv.org, revised Jul 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Pitera & Mikl'os R'asonyi, 2023. "Utility-based acceptability indices," Papers 2310.02014, arXiv.org.
    2. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    3. Zaevski, Tsvetelin S. & Nedeltchev, Dragomir C., 2023. "From BASEL III to BASEL IV and beyond: Expected shortfall and expectile risk measures," International Review of Financial Analysis, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Carlin C. F. Chu & Simon S. W. Li, 2024. "A multiobjective optimization approach for threshold determination in extreme value analysis for financial time series," Computational Management Science, Springer, vol. 21(1), pages 1-14, June.
    3. Amira Dridi & Mohamed El Ghourabi & Mohamed Limam, 2012. "On monitoring financial stress index with extreme value theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 329-339, March.
    4. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    5. Pitera, Marcin & Schmidt, Thorsten, 2018. "Unbiased estimation of risk," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 133-145.
    6. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    7. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    8. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    9. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    10. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    11. Xia Yang & Jing Zhang & Wei-Xin Ren, 2018. "Threshold selection for extreme value estimation of vehicle load effect on bridges," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    12. Rehman, Mobeen Ur & Owusu Junior, Peterson & Ahmad, Nasir & Vo, Xuan Vinh, 2022. "Time-varying risk analysis for commodity futures," Resources Policy, Elsevier, vol. 78(C).
    13. Giampiero Gallo & Ostap Okhrin & Giuseppe Storti, 2024. "Dynamic tail risk forecasting: what do realized skewness and kurtosis add?," Papers 2409.13516, arXiv.org.
    14. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    15. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    16. Jian Zhou, 2012. "Extreme risk measures for REITs: a comparison among alternative methods," Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 113-126, January.
    17. Giuseppe Storti & Chao Wang, 2023. "Modeling uncertainty in financial tail risk: A forecast combination and weighted quantile approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1648-1663, November.
    18. Jian, Zhihong & Li, Xupei & Zhu, Zhican, 2022. "Extreme risk transmission channels between the stock index futures and spot markets: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    19. Gonzales-Martínez, Rolando, 2008. "Medidas de Riesgo Financiero y una Aplicación a las Variaciones de Depósitos del Sistema Financiero Boliviano [Risk Measures and an Application to the Withdrawals of Deposits in the Bolivian Financ," MPRA Paper 14700, University Library of Munich, Germany.
    20. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.09937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.