IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.04719.html
   My bibliography  Save this paper

The relationship between driving volatility in time to collision and crash injury severity in a naturalistic driving environment

Author

Listed:
  • Behram Wali
  • Asad Khattak
  • Thomas Karnowski

Abstract

As a key indicator of unsafe driving, driving volatility characterizes the variations in microscopic driving decisions. This study characterizes volatility in longitudinal and lateral driving decisions and examines the links between driving volatility in time to collision and crash injury severity. By using a unique real-world naturalistic driving database from the 2nd Strategic Highway Research Program (SHRP), a test set of 671 crash events featuring around 0.2 million temporal samples of real world driving are analyzed. Based on different driving performance measures, 16 different volatility indices are created. To explore the relationships between crash-injury severity outcomes and driving volatility, the volatility indices are then linked with individual crash events including information on crash severity, drivers' pre crash maneuvers and behaviors, secondary tasks and durations, and other factors. As driving volatility prior to crash involvement can have different components, an indepth analysis is conducted using the aggregate as well as segmented (based on time to collision) real world driving data. To account for the issues of observed and unobserved heterogeneity, fixed and random parameter logit models with heterogeneity in parameter means and variances are estimated. The empirical results offer important insights regarding how driving volatility in time to collision relates to crash severity outcomes. Overall, statistically significant positive correlations are found between the aggregate (as well as segmented) volatility measures and crash severity outcomes. The findings suggest that greater driving volatility (both in longitudinal and lateral direction) in time to collision increases the likelihood of police reportable or most severe crash events... ...

Suggested Citation

  • Behram Wali & Asad Khattak & Thomas Karnowski, 2020. "The relationship between driving volatility in time to collision and crash injury severity in a naturalistic driving environment," Papers 2010.04719, arXiv.org.
  • Handle: RePEc:arx:papers:2010.04719
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.04719
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, October.
    2. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    3. Behram Wali & Asad Khattak, 2020. "Harnessing Ambient Sensing & Naturalistic Driving Systems to Understand Links Between Driving Volatility and Crash Propensity in School Zones: A generalized hierarchical mixed logit framework," Papers 2010.12017, arXiv.org.
    4. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    5. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Wu & Yanyong Guo & Wei Yin, 2021. "Real Time Safety Model for Pedestrian Red-Light Running at Signalized Intersections in China," Sustainability, MDPI, vol. 13(4), pages 1-11, February.
    2. Torkashvand, Mojtaba Bahrami & Aghayan, Iman & Qin, Xiao & Hadadi, Farhad, 2022. "An extended dynamic probabilistic risk approach based on a surrogate safety measure for rear-end collisions on two-lane roads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Wali, Behram & Santi, Paolo & Ratti, Carlo, 2023. "Are californians willing to use shared automated vehicles (SAV) & renounce existing vehicles? An empirical analysis of factors determining SAV use & household vehicle ownership," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    4. Wali, Behram & Frank, Lawrence D., 2024. "Redefining walkability to capture safety: Investing in pedestrian, bike, and street level design features to make it safe to walk and bike," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    3. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    4. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    5. Ke Wang & Xin Ye, 2021. "Development of alternative stochastic frontier models for estimating time-space prism vertices," Transportation, Springer, vol. 48(2), pages 773-807, April.
    6. Chen, Zhiwei & Li, Xiaopeng, 2021. "Unobserved heterogeneity in transportation equity analysis: Evidence from a bike-sharing system in southern Tampa," Journal of Transport Geography, Elsevier, vol. 91(C).
    7. Stefan Hochguertel & Henry Ohlsson, 2009. "Compensatory inter vivos gifts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 993-1023.
    8. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    9. Timothy J. Richards & Gordon J. Klein & Celine Bonnet & Zohra Bouamra-Mechemache, 2020. "Strategic Obfuscation and Retail Pricing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 57(4), pages 859-889, December.
    10. Tong Zhu & Zishuo Zhu & Jie Zhang & Chenxuan Yang, 2021. "Electric Bicyclist Injury Severity during Peak Traffic Periods: A Random-Parameters Approach with Heterogeneity in Means and Variances," IJERPH, MDPI, vol. 18(21), pages 1-19, October.
    11. Katherine Fuller & Carola Grebitus, 2023. "Consumers' preferences and willingness to pay for coffee sustainability labels," Agribusiness, John Wiley & Sons, Ltd., vol. 39(4), pages 1007-1025, October.
    12. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    13. Kang, Lei & Hansen, Mark, 2017. "Behavioral analysis of airline scheduled block time adjustment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 56-68.
    14. Campbell, Danny & Hutchinson, W. George & Scarpa, Riccardo, 2006. "Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes: Evidence from the Rural Environment Protection Scheme in Irel," Sustainability Indicators and Environmental Valuation Working Papers 12220, Fondazione Eni Enrico Mattei (FEEM).
    15. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
    16. Hensher, David A., 2008. "Empirical approaches to combining revealed and stated preference data: Some recent developments with reference to urban mode choice," Research in Transportation Economics, Elsevier, vol. 23(1), pages 23-29, January.
    17. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    18. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    19. Mark J. Koetse & Roy Brouwer, 2016. "Reference Dependence Effects on WTA and WTP Value Functions and Their Disparity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(4), pages 723-745, December.
    20. Danny Campbell & W George Hutchinson & Riccardo Scarpa, 2009. "Using Choice Experiments to Explore the Spatial Distribution of Willingness to Pay for Rural Landscape Improvements," Environment and Planning A, , vol. 41(1), pages 97-111, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.04719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.