IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i21p11131-d662780.html
   My bibliography  Save this article

Electric Bicyclist Injury Severity during Peak Traffic Periods: A Random-Parameters Approach with Heterogeneity in Means and Variances

Author

Listed:
  • Tong Zhu

    (College of Transportation Engineering, Chang’an University, Xi’an 710064, China)

  • Zishuo Zhu

    (College of Transportation Engineering, Chang’an University, Xi’an 710064, China)

  • Jie Zhang

    (Research Institute of Highway, Ministry of Transport, Beijing 100088, China)

  • Chenxuan Yang

    (Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA)

Abstract

Accidents involving electric bicycles, a popular means of transportation in China during peak traffic periods, have increased. However, studies have seldom attempted to detect the unique crash consequences during this period. This study aims to explore the factors influencing injury severity in electric bicyclists during peak traffic periods and provide recommendations to help devise specific management strategies. The random-parameters logit or mixed logit model is used to identify the relationship between different factors and injury severity. The injury severity is divided into four categories. The analysis uses automobile and electric bicycle crash data of Xi’an, China, between 2014 and 2019. During the peak traffic periods, the impact of low visibility significantly varies with factors such as areas with traffic control or without streetlights. Furthermore, compared with traveling in a straight line, three different turnings before the crash reduce the likelihood of severe injuries. Roadside protection trees are the most crucial measure guaranteeing riders’ safety during peak traffic periods. This study reveals the direction, magnitude, and randomness of factors that contribute to electric bicycle crashes. The results can help safety authorities devise targeted transportation safety management and planning strategies for peak traffic periods.

Suggested Citation

  • Tong Zhu & Zishuo Zhu & Jie Zhang & Chenxuan Yang, 2021. "Electric Bicyclist Injury Severity during Peak Traffic Periods: A Random-Parameters Approach with Heterogeneity in Means and Variances," IJERPH, MDPI, vol. 18(21), pages 1-19, October.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:21:p:11131-:d:662780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/21/11131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/21/11131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    2. Pang, Ming-bao & Zheng, Sha-sha & Cai, Zhang-hui, 2015. "Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 161-170.
    3. Abay, Kibrom A. & Paleti, Rajesh & Bhat, Chandra R., 2013. "The joint analysis of injury severity of drivers in two-vehicle crashes accommodating seat belt use endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 74-89.
    4. Hou, Qinzhong & Huo, Xiaoyan & Leng, Junqiang & Cheng, Yuxing, 2019. "Examination of driver injury severity in freeway single-vehicle crashes using a mixed logit model with heterogeneity-in-means," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    5. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanghyun Kim & Jungyeol Hong, 2023. "Severity Predictions for Intercity Bus Crashes on Highway Using a Random Parameter Ordered Probit Model," Sustainability, MDPI, vol. 15(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behram Wali & Asad Khattak & Thomas Karnowski, 2020. "The relationship between driving volatility in time to collision and crash injury severity in a naturalistic driving environment," Papers 2010.04719, arXiv.org.
    2. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    3. Abay, Kibrom A., 2013. "Examining pedestrian-injury severity using alternative disaggregate models," Research in Transportation Economics, Elsevier, vol. 43(1), pages 123-136.
    4. Abay, Kibrom A., 2015. "Evaluating simulation-based approaches and multivariate quadrature on sparse grids in estimating multivariate binary probit models," Economics Letters, Elsevier, vol. 126(C), pages 51-56.
    5. Laura Eboli & Carmen Forciniti, 2020. "The Severity of Traffic Crashes in Italy: An Explorative Analysis among Different Driving Circumstances," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    6. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.
    7. Cheng, Leilei & Yin, Changbin & Chien, Hsiaoping, 2015. "Demand for milk quantity and safety in urban China: evidence from Beijing and Harbin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    8. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    9. Johannes Buggle & Thierry Mayer & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "The Refugee’s Dilemma: Evidence from Jewish Migration out of Nazi Germany," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 1273-1345.
    10. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    11. Christelis, Dimitris & Dobrescu, Loretti I. & Motta, Alberto, 2020. "Early life conditions and financial risk-taking in older age," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    12. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    13. Tina Birgitte Hansen & Jes Sanddal Lindholt & Axel Diederichsen & Rikke Søgaard, 2019. "Do Non-participants at Screening have a Different Threshold for an Acceptable Benefit–Harm Ratio than Participants? Results of a Discrete Choice Experiment," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 12(5), pages 491-501, October.
    14. Doyle, Orla & Fidrmuc, Jan, 2006. "Who favors enlargement?: Determinants of support for EU membership in the candidate countries' referenda," European Journal of Political Economy, Elsevier, vol. 22(2), pages 520-543, June.
    15. Tovar, Jorge, 2012. "Consumers’ Welfare and Trade Liberalization: Evidence from the Car Industry in Colombia," World Development, Elsevier, vol. 40(4), pages 808-820.
    16. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    17. Yamada, Katsunori & Sato, Masayuki, 2013. "Another avenue for anatomy of income comparisons: Evidence from hypothetical choice experiments," Journal of Economic Behavior & Organization, Elsevier, vol. 89(C), pages 35-57.
    18. Potoglou, Dimitris & Palacios, Juan & Feijoo, Claudio & Gómez Barroso, Jose-Luis, 2015. "The supply of personal information: A study on the determinants of information provision in e-commerce scenarios," 26th European Regional ITS Conference, Madrid 2015 127174, International Telecommunications Society (ITS).
    19. Sant'Anna, Ana Claudia & Bergtold, Jason & Shanoyan, Aleksan & Caldas, Marcellus & Granco, Gabriel, 2021. "Deal or No Deal? Analysis of Bioenergy Feedstock Contract Choice with Multiple Opt-out Options and Contract Attribute Substitutability," 2021 Conference, August 17-31, 2021, Virtual 315289, International Association of Agricultural Economists.
    20. Mark Morrison & Craig Nalder, 2009. "Willingness to Pay for Improved Quality of Electricity Supply Across Business Type and Location," The Energy Journal, , vol. 30(2), pages 117-134, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:21:p:11131-:d:662780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.