Improving Investment Suggestions for Peer-to-Peer (P2P) Lending via Integrating Credit Scoring into Profit Scoring
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Michal Polena & Tobias Regner, 2018.
"Determinants of Borrowers’ Default in P2P Lending under Consideration of the Loan Risk Class,"
Games, MDPI, vol. 9(4), pages 1-17, October.
- Michal Polena & Tobias Regner, 2016. "Determinants of borrowers' default in P2P lending under consideration of the loan risk class," Jena Economics Research Papers 2016-023, Friedrich-Schiller-University Jena.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Teply, Petr & Polena, Michal, 2020. "Best classification algorithms in peer-to-peer lending," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Lu, Haitian & Wang, Bo & Wang, Haizhi & Zhao, Tianyu, 2020. "Does social capital matter for peer-to-peer-lending? Empirical evidence," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
- Yanyan Cui & Lixin Liu, 2022. "Investor sentiment-aware prediction model for P2P lending indicators based on LSTM," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
- Nigmonov, Asror & Shams, Syed & Alam, Khorshed, 2022. "Macroeconomic determinants of loan defaults: Evidence from the U.S. peer-to-peer lending market," Research in International Business and Finance, Elsevier, vol. 59(C).
- Marta Kłosok & Marcin Chlebus, 2020. "Towards better understanding of complex machine learning models using Explainable Artificial Intelligence (XAI) - case of Credit Scoring modelling," Working Papers 2020-18, Faculty of Economic Sciences, University of Warsaw.
- Serena Gallo, 2021. "Fintech platforms: Lax or careful borrowers’ screening?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-33, December.
- Ji-Yoon Kim & Sung-Bae Cho, 2019. "Towards Repayment Prediction in Peer-to-Peer Social Lending Using Deep Learning," Mathematics, MDPI, vol. 7(11), pages 1-17, November.
- Yeujun Yoon & Yu Li & Yan Feng, 2019. "Factors affecting platform default risk in online peer-to-peer (P2P) lending business: an empirical study using Chinese online P2P platform data," Electronic Commerce Research, Springer, vol. 19(1), pages 131-158, March.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-09-21 (Big Data)
- NEP-CMP-2020-09-21 (Computational Economics)
- NEP-EXP-2020-09-21 (Experimental Economics)
- NEP-PAY-2020-09-21 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.04536. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.