IDEAS home Printed from https://ideas.repec.org/p/wii/bpaper/105.html
   My bibliography  Save this paper

Robust Analysis of Income Inequality Dynamics in Russia: t-Statistic Based Approaches

Author

Listed:
  • Rustam Ibragimov
  • Marat Ibragimov
  • Jovlon Karimov
  • Galiya Yuldasheva

Abstract

Empirical analyses on inequality measurement and those in other fields in economics and finance often face the difficulty that the data is correlated, heterogeneous or heavy-tailed in some unknown fashion. The paper focuses on analogues and modifications of the recently developed t-statistic based robust inference methods that are applicable in the analysis of income and wealth distributions and inequality measures. The methods can be used under general conditions appropriate for real-world markets and have several advantages over other inference approaches available in the literature. We illustrate the use of the robust inference approaches in the study of important problems with pronounced complications for alternative econometric procedures focusing on the analysis of income distribution and inequality in the Russian economy where heterogeneity, outliers and crisis effects are expected to be present. Among other results, the paper provides robust confidence intervals for the Gini coefficient in Russia in the periods before and after the beginning of the on-going crisis. The results considerably complement the point estimates of the Gini coefficient for the Russian economy available in the literature. They further point out to significant changes in income inequality and redistribution of income in Russia prompted by the beginning of the on-going crisis in 2008. In addition to the above results, we also present characterizations of the whole income distribution in Russia using double Pareto models recently introduced to the field. The empirical results for double power-law models for Russian income distribution point out to its significant heavy-tailedness and provide further motivation for the development and applications of robust approaches to inference on income distributions, inequality measures and their dynamics and structural changes, both in emerging and transition economies and developed markets.

Suggested Citation

  • Rustam Ibragimov & Marat Ibragimov & Jovlon Karimov & Galiya Yuldasheva, 2012. "Robust Analysis of Income Inequality Dynamics in Russia: t-Statistic Based Approaches," wiiw Balkan Observatory Working Papers 105, The Vienna Institute for International Economic Studies, wiiw.
  • Handle: RePEc:wii:bpaper:105
    as

    Download full text from publisher

    File URL: https://wiiw.ac.at/robust-analysis-of-income-inequality-dynamics-in-russia-t-statistic-based-approaches-dlp-3189.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anthony B. Atkinson & Thomas Piketty & Emmanuel Saez, 2011. "Top Incomes in the Long Run of History," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 3-71, March.
    2. Sourushe Zandvakili, 2008. "Advances in Inequality Measurement and Usefulness of Statistical Inference," Forum for Social Economics, Springer;The Association for Social Economics, vol. 37(2), pages 135-145, August.
    3. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    4. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    5. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    6. Anthony Atkinson & Thomas Piketty, 2007. "Top incomes over the twentieth century: A contrast between continental european and english-speaking countries," Post-Print halshs-00754859, HAL.
    7. Yuriy Gorodnichenko & Klara Sabirianova Peter & Dmitriy Stolyarov, 2010. "Inequality and Volatility Moderation in Russia: Evidence from Micro-Level Panel Data on Consumption and Income," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(1), pages 209-237, January.
    8. Marat Ibragimov & Rustam Ibragimov, 2007. "Market Demand Elasticity and Income Inequality," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 579-587, September.
    9. Frank A. Cowell, 2008. "Income Distribution and Inequality," Chapters, in: John B. Davis & Wilfred Dolfsma (ed.), The Elgar Companion to Social Economics, chapter 13, Edward Elgar Publishing.
    10. Rustam Ibragimov & Dwight Jaffee & Johan Walden, 2009. "Nondiversification Traps in Catastrophe Insurance Markets," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 959-993.
    11. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    12. Gabaix, Xavier & Ibragimov, Rustam, 2011. "Rank − 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 24-39.
    13. Ibragimov, Marat & Ibragimov, Rustam & Kattuman, Paul, 2013. "Emerging markets and heavy tails," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2546-2559.
    14. Atkinson, A. B. & Piketty, Thomas (ed.), 2007. "Top Incomes Over the Twentieth Century: A Contrast Between Continental European and English-Speaking Countries," OUP Catalogue, Oxford University Press, number 9780199286881.
    15. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    16. Sourushe Zandvakili, 2008. "Advances in Inequality Measurement and Usefulness of Statistical Inference," Forum for Social Economics, Taylor & Francis Journals, vol. 37(2), pages 135-145, January.
    17. Rustam Ibragimov & Marat Ibragimov & Rufat Khamidov, 2010. "Measuring Inequality in CIS Countries: Theory and Empirics," wiiw Balkan Observatory Working Papers 88, The Vienna Institute for International Economic Studies, wiiw.
    18. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    19. Toda, Alexis Akira, 2012. "The double power law in income distribution: Explanations and evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 84(1), pages 364-381.
    20. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    21. Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marat Ibragimov & Rustam Ibragimov, 2018. "Heavy tails and upper-tail inequality: The case of Russia," Empirical Economics, Springer, vol. 54(2), pages 823-837, March.
    2. T. M. Maleva & M. A. Kartseva & P. O. Kuznetsova & A. A. Salmina, 2021. "Does the Application of Alternative Methods Change the Pattern of Regional Inequality in Russia?," Regional Research of Russia, Springer, vol. 11(1), pages 18-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marat Ibragimov & Rustam Ibragimov, 2018. "Heavy tails and upper-tail inequality: The case of Russia," Empirical Economics, Springer, vol. 54(2), pages 823-837, March.
    2. Rustam Ibragimov & Marat Ibragimov & Rufat Khamidov, 2010. "Measuring Inequality in CIS Countries: Theory and Empirics," wiiw Balkan Observatory Working Papers 88, The Vienna Institute for International Economic Studies, wiiw.
    3. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.
    4. Rustam Ibragimov & Paul Kattuman & Anton Skrobotov, 2021. "Robust Inference on Income Inequality: $t$-Statistic Based Approaches," Papers 2105.05335, arXiv.org, revised Nov 2021.
    5. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    6. Walter Distaso & Rustam Ibragimov & Alexander Semenov & Anton Skrobotov, 2020. "COVID-19: Tail Risk and Predictive Regressions," Papers 2009.02486, arXiv.org, revised Oct 2021.
    7. Diego Winkelried & Bruno Escobar, 2022. "Declining inequality in Latin America? Robustness checks for Peru," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 223-243, March.
    8. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    9. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    10. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    11. Brzezinski, Michal, 2013. "Asymptotic and bootstrap inference for top income shares," Economics Letters, Elsevier, vol. 120(1), pages 10-13.
    12. Frank A. Cowell & Philippe Kerm, 2015. "Wealth Inequality: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 671-710, September.
    13. Stephen P. Jenkins, 2017. "Pareto Models, Top Incomes and Recent Trends in UK Income Inequality," Economica, London School of Economics and Political Science, vol. 84(334), pages 261-289, April.
    14. Arthur Charpentier & Emmanuel Flachaire, 2019. "Pareto Models for Top Incomes," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02145024, HAL.
    15. Bluhm, Richard & Krause, Melanie, 2022. "Top lights: Bright cities and their contribution to economic development," Journal of Development Economics, Elsevier, vol. 157(C).
    16. Bluhm, Richard & Krause, Melanie, 2022. "Top lights: Bright cities and their contribution to economic development," Journal of Development Economics, Elsevier, vol. 157(C).
    17. Frank Cowell & Emmanuel Flachaire, 2021. "Inequality Measurement: Methods and Data," Post-Print hal-03589066, HAL.
    18. Ankudinov, Andrei & Ibragimov, Rustam & Lebedev, Oleg, 2017. "Sanctions and the Russian stock market," Research in International Business and Finance, Elsevier, vol. 40(C), pages 150-162.
    19. Lidia Ceriani & Paolo Verme, 2022. "Population Changes and the Measurement of Inequality," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 549-575, July.
    20. Ankudinov, Andrei & Ibragimov, Rustam & Lebedev, Oleg, 2017. "Heavy tails and asymmetry of returns in the Russian stock market," Emerging Markets Review, Elsevier, vol. 32(C), pages 200-219.

    More about this item

    Keywords

    Income inequality; inequality measures; robustness; heavy-tailedness; Russian economy;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wii:bpaper:105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Customer service (email available below). General contact details of provider: https://edirc.repec.org/data/wiiwwat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.