IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.01644.html
   My bibliography  Save this paper

A note on large deviations in life insurance

Author

Listed:
  • Stefan Gerhold

Abstract

We study large and moderate deviations for a life insurance portfolio, without assuming identically distributed losses. The crucial assumption is that losses are bounded, and that variances are bounded below. From a standard large deviations upper bound, we get an exponential bound for the probability of the average loss exceeding a threshold. A counterexample shows that a full large deviation principle does not follow from our assumptions.

Suggested Citation

  • Stefan Gerhold, 2020. "A note on large deviations in life insurance," Papers 2009.01644, arXiv.org.
  • Handle: RePEc:arx:papers:2009.01644
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.01644
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amir Dembo & Jean-Dominique Deuschel & Darrell Duffie, 2004. "Large portfolio losses," Finance and Stochastics, Springer, vol. 8(1), pages 3-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    2. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    3. Eisenberg, Larry, 2011. "Destabilizing properties of a VaR or probability-of-ruin constraint when variances may be infinite," Journal of Financial Stability, Elsevier, vol. 7(1), pages 10-18, January.
    4. Mengzhe Zhang & Leunglung Chan, 2016. "Saddlepoint approximations to option price in a regime-switching model," Annals of Finance, Springer, vol. 12(1), pages 55-69, February.
    5. K. Bujok & B. M. Hambly & C. Reisinger, 2015. "Multilevel Simulation of Functionals of Bernoulli Random Variables with Application to Basket Credit Derivatives," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 579-604, September.
    6. Govindaraj, Suresh, 2005. "Hypothesis testing for diffusion processes with continuous observations: Direct computation of large deviation results for error probabilities," Finance Research Letters, Elsevier, vol. 2(4), pages 234-247, December.
    7. Paolo Dai Pra & Wolfgang J. Runggaldier & Elena Sartori & Marco Tolotti, 2007. "Large portfolio losses: A dynamic contagion model," Papers 0704.1348, arXiv.org, revised Mar 2009.
    8. Spiliopoulos, Konstantinos & Sowers, Richard B., 2011. "Recovery rates in investment-grade pools of credit assets: A large deviations analysis," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2861-2898.
    9. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers, 2011. "Default clustering in large portfolios: Typical events," Papers 1104.1773, arXiv.org, revised Feb 2013.
    10. Pierre-Loic M'eliot & Ashkan Nikeghbali & Gabriele Visentin, 2022. "Mod-Poisson approximation schemes: Applications to credit risk," Papers 2211.04436, arXiv.org.
    11. Richard B. Sowers, 2009. "Exact Pricing Asymptotics of Investment-Grade Tranches of Synthetic CDO's Part I: A Large Homogeneous Pool," Papers 0903.4475, arXiv.org.
    12. Dai Pra, Paolo & Tolotti, Marco, 2009. "Heterogeneous credit portfolios and the dynamics of the aggregate losses," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2913-2944, September.
    13. Giuseppe Genovese & Ashkan Nikeghbali & Nicola Serra & Gabriele Visentin, 2022. "Universal approximation of credit portfolio losses using Restricted Boltzmann Machines," Papers 2202.11060, arXiv.org, revised Apr 2023.
    14. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    15. Horst, Ulrich, 2007. "Stochastic cascades, credit contagion, and large portfolio losses," Journal of Economic Behavior & Organization, Elsevier, vol. 63(1), pages 25-54, May.
    16. Uberti, Pierpaolo & Figini, Silvia, 2010. "How to measure single-name credit risk concentrations," European Journal of Operational Research, Elsevier, vol. 202(1), pages 232-238, April.
    17. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    18. Amogh Deshpande, 2014. "Comparing the Value at Risk Performance of the CreditRisk + and its Enhancement: A Large Deviations Approach," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 1009-1023, December.
    19. Andrew W Lo, 2016. "Moore's Law vs. Murphy's Law in the financial system: who's winning?," BIS Working Papers 564, Bank for International Settlements.
    20. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.01644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.