Causal Inference in Possibly Nonlinear Factor Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Donald, Stephen G. & Hsu, Yu-Chin, 2014.
"Estimation and inference for distribution functions and quantile functions in treatment effect models,"
Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
- Stephen G. Donald & Yu-Chin Hsu, 2012. "Estimation and Inference for Distribution Functions and Quantile Functions in Treatment Effect Models," IEAS Working Paper : academic research 12-A016, Institute of Economics, Academia Sinica, Taipei, Taiwan.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
- Cécile Couharde & Rémi Generoso, 2024.
"Assessing the Impact of National Air Quality Standards on Agricultural Land Values: Insights from Corn and Soybean Regions,"
Working Papers
hal-04503777, HAL.
- Cécile Couharde & Rémi Generoso, 2024. "Assessing the Impact of National Air Quality Standards on Agricultural Land Values: Insights from Corn and Soybean Regions," EconomiX Working Papers 2024-9, University of Paris Nanterre, EconomiX.
- Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020.
"Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
- Victor Chernozhukov & Iv'an Fern'andez-Val & Blaise Melly & Kaspar Wuthrich, 2016. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Papers 1608.05142, arXiv.org, revised Aug 2018.
- Chernozhukov, Victor & Fernández-Val, Iván & Melly, Blaise & Wüthrich, Kaspar, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," University of California at San Diego, Economics Working Paper Series qt5zm6m9rq, Department of Economics, UC San Diego.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2017. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers 23/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2017. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers CWP23/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2016. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers 35/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2016. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers CWP35/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar W thrich, 2016. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Diskussionsschriften dp1607, Universitaet Bern, Departement Volkswirtschaft.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021.
"A unified framework for efficient estimation of general treatment models,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2018. "A Unified Framework for Efficient Estimation of General Treatment Models," Papers 1808.04936, arXiv.org, revised Aug 2018.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," CeMMAP working papers CWP64/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ai, C. & Linton, O. & Motegi, K. & Zhang, Z., 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," Cambridge Working Papers in Economics 1934, Faculty of Economics, University of Cambridge.
- Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
- Wei Huang & Oliver Linton & Zheng Zhang, 2021.
"A Unified Framework for Specification Tests of Continuous Treatment Effect Models,"
Papers
2102.08063, arXiv.org, revised Sep 2021.
- Huang, W. & Linton, O. & Zhang, Z., 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Cambridge Working Papers in Economics 2113, Faculty of Economics, University of Cambridge.
- Sungwon Lee, 2024. "Partial identification and inference for conditional distributions of treatment effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 107-127, January.
- Ying-Ying Lee, 2014. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Economics Series Working Papers 706, University of Oxford, Department of Economics.
- Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2024. "Reprint: Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 239(2).
- Ferreira, Francisco H. G. & Firpo, Sergio & Galvao, Antonio F., 2017.
"Estimation and Inference for Actual and Counterfactual Growth Incidence Curves,"
IZA Discussion Papers
10473, Institute of Labor Economics (IZA).
- Ferreira,Francisco H. G. & Firpo,Sergio & Galvao,Antonio F., 2017. "Estimation and inference for actual and counterfactual growth incidence curves," Policy Research Working Paper Series 7933, The World Bank.
- Ying-Ying Lee, 2015. "Efficient propensity score regression estimators of multi-valued treatment effects for the treated," Economics Series Working Papers 738, University of Oxford, Department of Economics.
- Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
- Callaway, Brantly & Sant’Anna, Pedro H.C., 2021.
"Difference-in-Differences with multiple time periods,"
Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
- Brantly Callaway & Pedro H. C. Sant'Anna, 2018. "Difference-in-Differences with Multiple Time Periods," Papers 1803.09015, arXiv.org, revised Dec 2020.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Pedro H. C. Sant’Anna, 2021.
"Nonparametric Tests for Treatment Effect Heterogeneity With Duration Outcomes,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 816-832, July.
- Pedro H. C. Sant'Anna, 2016. "Nonparametric Tests for Treatment Effect Heterogeneity with Duration Outcomes," Papers 1612.02090, arXiv.org, revised Feb 2020.
- Francesca Caselli & Mr. Philippe Wingender, 2018. "Bunching at 3 Percent: The Maastricht Fiscal Criterion and Government Deficits," IMF Working Papers 2018/182, International Monetary Fund.
- Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
- Zequn Jin & Lihua Lin & Zhengyu Zhang, 2022. "Identification and Auto-debiased Machine Learning for Outcome Conditioned Average Structural Derivatives," Papers 2211.07903, arXiv.org.
- Sungwon Lee, 2021. "Partial Identification and Inference for Conditional Distributions of Treatment Effects," Papers 2108.00723, arXiv.org, revised Nov 2023.
- Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2021. "A Nonparametric Test for Testing Heterogeneity in Conditional Quantile Treatment Effects," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202117, University of Kansas, Department of Economics, revised Aug 2021.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-09-21 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.13651. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.