IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.05824.html
   My bibliography  Save this paper

Risk Measures Estimation Under Wasserstein Barycenter

Author

Listed:
  • M. Andrea Arias-Serna
  • Jean-Michel Loubes
  • Francisco J. Caro-Lopera

Abstract

Randomness in financial markets requires modern and robust multivariate models of risk measures. This paper proposes a new approach for modeling multivariate risk measures under Wasserstein barycenters of probability measures supported on location-scatter families. Simple and advanced copulas multivariate Value at Risk models are compared with the derived technique. The performance of the model is also checked in market indices of United States generated by the financial crisis due to COVID-19. The introduced model behaves satisfactory in both common and volatile periods of asset prices, providing realistic VaR forecast in this era of social distancing.

Suggested Citation

  • M. Andrea Arias-Serna & Jean-Michel Loubes & Francisco J. Caro-Lopera, 2020. "Risk Measures Estimation Under Wasserstein Barycenter," Papers 2008.05824, arXiv.org.
  • Handle: RePEc:arx:papers:2008.05824
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.05824
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    3. Yu Feng & Erik Schlogl, 2018. "Model Risk Measurement under Wasserstein Distance," Papers 1809.03641, arXiv.org, revised Mar 2019.
    4. Rüdiger Kiesel & Robin Rühlicke & Gerhard Stahl & Jinsong Zheng, 2016. "The Wasserstein Metric and Robustness in Risk Management," Risks, MDPI, vol. 4(3), pages 1-14, August.
    5. Jin Xisong & Lehnert Thorsten, 2018. "Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 19-46, February.
    6. Lakshithe Wagalath & Jorge Zubelli, 2018. "A Liquidation Risk Adjustment For Value At Risk And Expected Shortfall," Post-Print hal-02572794, HAL.
    7. Lakshithe Wagalath & Jorge P. Zubelli, 2018. "A Liquidation Risk Adjustment For Value At Risk And Expected Shortfall," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 1-21, May.
    8. Giovanni BARONE-ADESI & Kostas GIANNOPOULOS & Les VOSPER, 2015. "Estimating the Joint Tail Risk Under the Filtered Historical Simulation. An Application to the CCP's Default and Waterfall Fund," Swiss Finance Institute Research Paper Series 15-12, Swiss Finance Institute.
    9. Jianping Li & Jichuang Feng & Xiaolei Sun & Minglu Li, 2012. "Risk Integration Mechanisms And Approaches In Banking Industry," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1183-1213.
    10. Jianping Li & Xiaoqian Zhu & Cheng-Few Lee & Dengsheng Wu & Jichuang Feng & Yong Shi, 2015. "On the aggregation of credit, market and operational risks," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 161-189, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christa Cuchiero & Guido Gazzani & Irene Klein, 2022. "Risk measures under model uncertainty: a Bayesian viewpoint," Papers 2204.07115, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theo Berger & Christina Uffmann, 2021. "Assessing liquidity‐adjusted risk forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1179-1189, November.
    2. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    3. Nuerxiati Abudurexiti & Kai He & Dongdong Hu & Svetlozar T. Rachev & Hasanjan Sayit & Ruoyu Sun, 2021. "Portfolio analysis with mean-CVaR and mean-CVaR-skewness criteria based on mean-variance mixture models," Papers 2111.04311, arXiv.org, revised Feb 2023.
    4. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    5. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    6. Ignatieva, Katja & Landsman, Zinoviy, 2021. "A class of generalised hyper-elliptical distributions and their applications in computing conditional tail risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 437-465.
    7. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    8. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
    9. Takaaki Koike & Marius Hofert, 2020. "Modality for Scenario Analysis and Maximum Likelihood Allocation," Papers 2005.02950, arXiv.org, revised Nov 2020.
    10. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    11. Dorinel Bastide & St'ephane Cr'epey & Samuel Drapeau & Mekonnen Tadese, 2023. "Resolving a Clearing Member's Default, A Radner Equilibrium Approach," Papers 2310.02608, arXiv.org, revised Oct 2024.
    12. David Evangelista & Yuri Thamsten, 2020. "On finite population games of optimal trading," Papers 2004.00790, arXiv.org, revised Feb 2021.
    13. Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
    14. Markus Huggenberger & Peter Albrecht, 2022. "Risk pooling and solvency regulation: A policyholder's perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 907-950, December.
    15. Paulusch, Joachim & Schlütter, Sebastian, 2022. "Sensitivity-implied tail-correlation matrices," Journal of Banking & Finance, Elsevier, vol. 134(C).
    16. M. Andrea Arias-Serna & Jean Michel Loubes & Francisco J. Caro-Lopera, 2022. "Multi-Variate Risk Measures under Wasserstein Barycenter," Risks, MDPI, vol. 10(9), pages 1-15, September.
    17. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    18. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    19. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    20. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.05824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.