IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.08815.html
   My bibliography  Save this paper

Limits of random walks with distributionally robust transition probabilities

Author

Listed:
  • Daniel Bartl
  • Stephan Eckstein
  • Michael Kupper

Abstract

We consider a nonlinear random walk which, in each time step, is free to choose its own transition probability within a neighborhood (w.r.t. Wasserstein distance) of the transition probability of a fixed L\'evy process. In analogy to the classical framework we show that, when passing from discrete to continuous time via a scaling limit, this nonlinear random walk gives rise to a nonlinear semigroup. We explicitly compute the generator of this semigroup and corresponding PDE as a perturbation of the generator of the initial L\'evy process.

Suggested Citation

  • Daniel Bartl & Stephan Eckstein & Michael Kupper, 2020. "Limits of random walks with distributionally robust transition probabilities," Papers 2007.08815, arXiv.org, revised Apr 2021.
  • Handle: RePEc:arx:papers:2007.08815
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.08815
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Risks, MDPI, vol. 9(1), pages 1-20, January.
    2. Dolinsky, Yan & Nutz, Marcel & Soner, H. Mete, 2012. "Weak approximation of G-expectations," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 664-675.
    3. Denk, Robert & Kupper, Michael & Nendel, Max, 2020. "A semigroup approach to nonlinear Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1616-1642.
    4. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
    5. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2020. "Computational aspects of robust optimized certainty equivalents and option pricing," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 287-309, January.
    6. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    7. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blessing, Jonas & Kupper, Michael & Nendel, Max, 2023. "Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups," Center for Mathematical Economics Working Papers 680, Center for Mathematical Economics, Bielefeld University.
    2. Max Nendel & Alessandro Sgarabottolo, 2022. "A parametric approach to the estimation of convex risk functionals based on Wasserstein distance," Papers 2210.14340, arXiv.org, revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuhrmann, Sven & Kupper, Michael & Nendel, Max, 2021. "Wasserstein Perturbations of Markovian Transition Semigroups," Center for Mathematical Economics Working Papers 649, Center for Mathematical Economics, Bielefeld University.
    2. Jonas Blessing & Michael Kupper & Alessandro Sgarabottolo, 2024. "Discrete approximation of risk-based prices under volatility uncertainty," Papers 2411.00713, arXiv.org.
    3. Ruslan Mirmominov & Johannes Wiesel, 2024. "A dynamic programming principle for multiperiod control problems with bicausal constraints," Papers 2410.23927, arXiv.org.
    4. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    5. Derek Singh & Shuzhong Zhang, 2020. "Robust Arbitrage Conditions for Financial Markets," Papers 2004.09432, arXiv.org.
    6. Bingyan Han, 2022. "Distributionally robust risk evaluation with a causality constraint and structural information," Papers 2203.10571, arXiv.org, revised Aug 2024.
    7. Sojung Kim & Stefan Weber, 2020. "Simulation Methods for Robust Risk Assessment and the Distorted Mix Approach," Papers 2009.03653, arXiv.org, revised Jan 2022.
    8. Daniel Bartl & Ludovic Tangpi, 2020. "Non-asymptotic convergence rates for the plug-in estimation of risk measures," Papers 2003.10479, arXiv.org, revised Oct 2022.
    9. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    10. Derek Singh & Shuzhong Zhang, 2021. "Robust Arbitrage Conditions for Financial Markets," SN Operations Research Forum, Springer, vol. 2(3), pages 1-52, September.
    11. Ariel Neufeld & Julian Sester, 2024. "Non-concave distributionally robust stochastic control in a discrete time finite horizon setting," Papers 2404.05230, arXiv.org.
    12. Zhi Chen & Weijun Xie, 2021. "Sharing the value‐at‐risk under distributional ambiguity," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 531-559, January.
    13. Criens, David & Niemann, Lars, 2024. "A class of multidimensional nonlinear diffusions with the Feller property," Statistics & Probability Letters, Elsevier, vol. 208(C).
    14. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    15. Meng Qi & Ying Cao & Zuo-Jun (Max) Shen, 2022. "Distributionally Robust Conditional Quantile Prediction with Fixed Design," Management Science, INFORMS, vol. 68(3), pages 1639-1658, March.
    16. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust decision-making under risk and ambiguity," Papers 2104.12573, arXiv.org, revised Oct 2021.
    17. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    18. Anthony Coache & Sebastian Jaimungal, 2024. "Robust Reinforcement Learning with Dynamic Distortion Risk Measures," Papers 2409.10096, arXiv.org.
    19. Yan Dolinsky, 2023. "Delayed Semi-static Hedging in the Continuous Time Bachelier Model," Papers 2311.17270, arXiv.org, revised Sep 2024.
    20. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Duality Theory for Robust Utility Maximisation," Papers 2007.08376, arXiv.org, revised Jun 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.08815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.