IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.02739.html
   My bibliography  Save this paper

Semi-nonparametric Latent Class Choice Model with a Flexible Class Membership Component: A Mixture Model Approach

Author

Listed:
  • Georges Sfeir
  • Maya Abou-Zeid
  • Filipe Rodrigues
  • Francisco Camara Pereira
  • Isam Kaysi

Abstract

This study presents a semi-nonparametric Latent Class Choice Model (LCCM) with a flexible class membership component. The proposed model formulates the latent classes using mixture models as an alternative approach to the traditional random utility specification with the aim of comparing the two approaches on various measures including prediction accuracy and representation of heterogeneity in the choice process. Mixture models are parametric model-based clustering techniques that have been widely used in areas such as machine learning, data mining and patter recognition for clustering and classification problems. An Expectation-Maximization (EM) algorithm is derived for the estimation of the proposed model. Using two different case studies on travel mode choice behavior, the proposed model is compared to traditional discrete choice models on the basis of parameter estimates' signs, value of time, statistical goodness-of-fit measures, and cross-validation tests. Results show that mixture models improve the overall performance of latent class choice models by providing better out-of-sample prediction accuracy in addition to better representations of heterogeneity without weakening the behavioral and economic interpretability of the choice models.

Suggested Citation

  • Georges Sfeir & Maya Abou-Zeid & Filipe Rodrigues & Francisco Camara Pereira & Isam Kaysi, 2020. "Semi-nonparametric Latent Class Choice Model with a Flexible Class Membership Component: A Mixture Model Approach," Papers 2007.02739, arXiv.org.
  • Handle: RePEc:arx:papers:2007.02739
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.02739
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    2. William H. Greene & David A. Hensher, 2013. "Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model," Applied Economics, Taylor & Francis Journals, vol. 45(14), pages 1897-1902, May.
    3. Greene, William H. & Hensher, David A. & Rose, John, 2006. "Accounting for heterogeneity in the variance of unobserved effects in mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 75-92, January.
    4. Sfeir, Georges & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Multivariate count data models for adoption of new transport modes in an organization-based context," Transport Policy, Elsevier, vol. 91(C), pages 59-75.
    5. Angel Bujosa & Antoni Riera & Robert Hicks, 2010. "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 477-493, December.
    6. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    7. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    8. Fosgerau, Mogens & Hess, Stephane, 2009. "A comparison of methods for representing random taste heterogeneity in discrete choice models," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 42, pages 1-25.
    9. Charles F. Manski, 2001. "Daniel McFadden and the Econometric Analysis of Discrete Choice," Scandinavian Journal of Economics, Wiley Blackwell, vol. 103(2), pages 217-230, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    2. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    3. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    4. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    5. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    6. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    7. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    8. Georges Sfeir & Filipe Rodrigues & Maya Abou-Zeid, 2021. "Gaussian Process Latent Class Choice Models," Papers 2101.12252, arXiv.org.
    9. Rico Krueger & Taha H. Rashidi & Akshay Vij, 2019. "Semi-Parametric Hierarchical Bayes Estimates of New Yorkers' Willingness to Pay for Features of Shared Automated Vehicle Services," Papers 1907.09639, arXiv.org.
    10. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    11. Wang, Chen & Sun, Jiayi & Russell, Roddy & Daziano, Ricardo A., 2018. "Analyzing willingness to improve the resilience of New York City's transportation system," Transport Policy, Elsevier, vol. 69(C), pages 10-19.
    12. Yang, Chih-Wen & Sung, Yen-Ching, 2010. "Constructing a mixed-logit model with market positioning to analyze the effects of new mode introduction," Journal of Transport Geography, Elsevier, vol. 18(1), pages 175-182.
    13. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    14. Franceschinis, Cristiano & Thiene, Mara & Scarpa, Riccardo & Rose, John & Moretto, Michele & Cavalli, Raffaele, 2017. "Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory," Energy, Elsevier, vol. 125(C), pages 313-326.
    15. Catalina M. Torres & Sergio Colombo & Nick Hanley, 2014. "Incorrectly accounting for preference heterogeneity in choice experiments: what are the implications for welfare measurement?," DEA Working Papers 65, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    16. Sarrias, Mauricio & Daziano, Ricardo A., 2018. "Individual-specific point and interval conditional estimates of latent class logit parameters," Journal of choice modelling, Elsevier, vol. 27(C), pages 50-61.
    17. Yoo, James & Ready, Richard C., 2014. "Preference heterogeneity for renewable energy technology," Energy Economics, Elsevier, vol. 42(C), pages 101-114.
    18. Zhou, Heng & Norman, Richard & Xia, Jianhong(Cecilia) & Hughes, Brett & Kelobonye, Keone & Nikolova, Gabi & Falkmer, Torbjorn, 2020. "Analysing travel mode and airline choice using latent class modelling: A case study in Western Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 187-205.
    19. Péter Czine & Péter Balogh & Zsanett Blága & Zoltán Szabó & Réka Szekeres & Stephane Hess & Béla Juhász, 2024. "Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches?," Econometrics, MDPI, vol. 12(3), pages 1-16, August.
    20. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.02739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.