IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.05863.html
   My bibliography  Save this paper

C\`adl\`ag semimartingale strategies for optimal trade execution in stochastic order book models

Author

Listed:
  • Julia Ackermann
  • Thomas Kruse
  • Mikhail Urusov

Abstract

We analyze an optimal trade execution problem in a financial market with stochastic liquidity. To this end we set up a limit order book model in continuous time. Both order book depth and resilience are allowed to evolve randomly in time. We allow for trading in both directions and for c\`adl\`ag semimartingales as execution strategies. We derive a quadratic BSDE that under appropriate assumptions characterizes minimal execution costs and identify conditions under which an optimal execution strategy exists. We also investigate qualitative aspects of optimal strategies such as, e.g., appearance of strategies with infinite variation or existence of block trades and discuss connections with the discrete-time formulation of the problem. Our findings are illustrated in several examples.

Suggested Citation

  • Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2020. "C\`adl\`ag semimartingale strategies for optimal trade execution in stochastic order book models," Papers 2006.05863, arXiv.org, revised Jul 2021.
  • Handle: RePEc:arx:papers:2006.05863
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.05863
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    2. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    3. Paulwin Graewe & Ulrich Horst, 2016. "Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience," Papers 1611.03435, arXiv.org, revised Jul 2017.
    4. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2020. "Optimal trade execution in an order book model with stochastic liquidity parameters," Papers 2006.05843, arXiv.org, revised Apr 2021.
    5. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    6. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2019. "Optimal trade execution in order books with stochastic liquidity," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 507-541, April.
    7. Marie-Amélie Morlais, 2009. "Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem," Finance and Stochastics, Springer, vol. 13(1), pages 121-150, January.
    8. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    9. Graewe, Paulwin & Horst, Ulrich & Séré, Eric, 2018. "Smooth solutions to portfolio liquidation problems under price-sensitive market impact," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 979-1006.
    10. Alexander Schied, 2012. "A control problem with fuel constraint and Dawson-Watanabe superprocesses," Papers 1207.5809, arXiv.org, revised Dec 2013.
    11. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    12. Patrick Cheridito & Tardu Sepin, 2014. "Optimal Trade Execution Under Stochastic Volatility and Liquidity," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 342-362, September.
    13. Ulrich Horst & Xiaonyu Xia, 2019. "Multi-dimensional optimal trade execution under stochastic resilience," Finance and Stochastics, Springer, vol. 23(4), pages 889-923, October.
    14. Aurélien Alfonsi & José Infante Acevedo, 2014. "Optimal execution and price manipulations in time-varying limit order books," Post-Print hal-00687193, HAL.
    15. Aurélien Alfonsi & José Infante Acevedo, 2014. "Optimal Execution and Price Manipulations in Time-varying Limit Order Books," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(3), pages 201-237, July.
    16. Ulrich Horst & Jinniao Qiu & Qi Zhang, 2014. "A Constrained Control Problem with Degenerate Coefficients and Degenerate Backward SPDEs with Singular Terminal Condition," Papers 1407.0108, arXiv.org, revised Jul 2015.
    17. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2016. "Existence and uniqueness results for BSDEs with jumps: the whole nine yards," Papers 1607.04214, arXiv.org, revised Nov 2018.
    18. Paulwin Graewe & Ulrich Horst & Jinniao Qiu, 2013. "A Non-Markovian Liquidation Problem and Backward SPDEs with Singular Terminal Conditions," Papers 1309.0461, arXiv.org, revised Jan 2015.
    19. Kruse, T. & Popier, A., 2016. "Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2554-2592.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "A Mean-Field Control Problem of Optimal Portfolio Liquidation with Semimartingale Strategies," Papers 2207.00446, arXiv.org, revised Sep 2023.
    2. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2021. "Self-exciting price impact via negative resilience in stochastic order books," Papers 2112.03789, arXiv.org, revised Jul 2022.
    3. Xinman Cheng & Guanxing Fu & Xiaonyu Xia, 2024. "Long Time Behavior of Optimal Liquidation Problems," Papers 2405.14177, arXiv.org.
    4. Ulrich Horst & Evgueni Kivman, 2021. "Optimal trade execution under small market impact and portfolio liquidation with semimartingale strategies," Papers 2103.05957, arXiv.org, revised Jul 2023.
    5. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2022. "Reducing Obizhaeva-Wang type trade execution problems to LQ stochastic control problems," Papers 2206.03772, arXiv.org, revised Sep 2023.
    6. Tao Chen & Mike Ludkovski & Moritz Vo{ss}, 2022. "On Parametric Optimal Execution and Machine Learning Surrogates," Papers 2204.08581, arXiv.org, revised Oct 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2021. "Càdlàg semimartingale strategies for optimal trade execution in stochastic order book models," Finance and Stochastics, Springer, vol. 25(4), pages 757-810, October.
    2. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2020. "Optimal trade execution in an order book model with stochastic liquidity parameters," Papers 2006.05843, arXiv.org, revised Apr 2021.
    3. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2021. "Self-exciting price impact via negative resilience in stochastic order books," Papers 2112.03789, arXiv.org, revised Jul 2022.
    4. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2022. "Reducing Obizhaeva-Wang type trade execution problems to LQ stochastic control problems," Papers 2206.03772, arXiv.org, revised Sep 2023.
    5. Ulrich Horst & Evgueni Kivman, 2021. "Optimal trade execution under small market impact and portfolio liquidation with semimartingale strategies," Papers 2103.05957, arXiv.org, revised Jul 2023.
    6. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.
    7. Fu, Guanxing & Horst, Ulrich & Xia, Xiaonyu, 2022. "Portfolio Liquidation Games with Self-Exciting Order Flow," Rationality and Competition Discussion Paper Series 327, CRC TRR 190 Rationality and Competition.
    8. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2024. "Reducing Obizhaeva–Wang-type trade execution problems to LQ stochastic control problems," Finance and Stochastics, Springer, vol. 28(3), pages 813-863, July.
    9. Ulrich Horst & Evgueni Kivman, 2024. "Optimal trade execution under small market impact and portfolio liquidation with semimartingale strategies," Finance and Stochastics, Springer, vol. 28(3), pages 759-812, July.
    10. Ulrich Horst & Xiaonyu Xia, 2019. "Multi-dimensional optimal trade execution under stochastic resilience," Finance and Stochastics, Springer, vol. 23(4), pages 889-923, October.
    11. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    12. Christoph Belak & Johannes Muhle-Karbe & Kevin Ou, 2018. "Optimal Trading with General Signals and Liquidation in Target Zone Models," Papers 1808.00515, arXiv.org.
    13. Tao Chen & Mike Ludkovski & Moritz Vo{ss}, 2022. "On Parametric Optimal Execution and Machine Learning Surrogates," Papers 2204.08581, arXiv.org, revised Oct 2023.
    14. Siu, Chi Chung & Guo, Ivan & Zhu, Song-Ping & Elliott, Robert J., 2019. "Optimal execution with regime-switching market resilience," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 17-40.
    15. Paulwin Graewe & Ulrich Horst, 2016. "Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience," Papers 1611.03435, arXiv.org, revised Jul 2017.
    16. Max O. Souza & Yuri Thamsten, 2021. "On regularized optimal execution problems and their singular limits," Papers 2101.02731, arXiv.org, revised Aug 2023.
    17. Cebiroğlu, Gökhan & Horst, Ulrich, 2015. "Optimal order display in limit order markets with liquidity competition," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 81-100.
    18. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    19. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    20. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.05863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.