IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.06796.html
   My bibliography  Save this paper

Public Concern and the Financial Markets during the COVID-19 outbreak

Author

Listed:
  • Michele Costola
  • Matteo Iacopini
  • Carlo R. M. A. Santagiustina

Abstract

We measure the public concern during the outbreak of COVID-19 disease using three data sources from Google Trends (YouTube, Google News, and Google Search). Our findings are three-fold. First, the public concern in Italy is found to be a driver of the concerns in other countries. Second, we document that Google Trends data for Italy better explains the stock index returns of France, Germany, Great Britain, the United States, and Spain with respect to their country-based indicators. Finally, we perform a time-varying analysis and identify that the most severe impacts in the financial markets occur at each step of the Italian lock-down process.

Suggested Citation

  • Michele Costola & Matteo Iacopini & Carlo R. M. A. Santagiustina, 2020. "Public Concern and the Financial Markets during the COVID-19 outbreak," Papers 2005.06796, arXiv.org.
  • Handle: RePEc:arx:papers:2005.06796
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.06796
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castelnuovo, Efrem & Tran, Trung Duc, 2017. "Google It Up! A Google Trends-based Uncertainty index for the United States and Australia," Economics Letters, Elsevier, vol. 161(C), pages 149-153.
    2. Michael Donadelli, 2015. "Google search-based metrics, policy-related uncertainty and macroeconomic conditions," Applied Economics Letters, Taylor & Francis Journals, vol. 22(10), pages 801-807, July.
    3. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    4. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    5. Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
    6. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu Qiao & Yan Yan, 2020. "How does stock market reflect the change in economic demand? A study on the industry-specific volatility spillover networks of China's stock market during the outbreak of COVID-19," Papers 2007.07487, arXiv.org.
    2. Costola, Michele & Hinz, Oliver & Nofer, Michael & Pelizzon, Loriana, 2023. "Machine learning sentiment analysis, COVID-19 news and stock market reactions," Research in International Business and Finance, Elsevier, vol. 64(C).
    3. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2023. "Which COVID-19 information really impacts stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    4. Szczygielski, Jan Jakub & Brzeszczyński, Janusz & Charteris, Ailie & Bwanya, Princess Rutendo, 2022. "The COVID-19 storm and the energy sector: The impact and role of uncertainty," Energy Economics, Elsevier, vol. 109(C).
    5. Szczygielski, Jan Jakub & Bwanya, Princess Rutendo & Charteris, Ailie & Brzeszczyński, Janusz, 2021. "The only certainty is uncertainty: An analysis of the impact of COVID-19 uncertainty on regional stock markets," Finance Research Letters, Elsevier, vol. 43(C).
    6. Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    7. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2022. "The impact and role of COVID-19 uncertainty: A global industry analysis," International Review of Financial Analysis, Elsevier, vol. 80(C).
    8. Jiang, Jie & Hou, Jack & Wang, Cangyu & Liu, HaiYue, 2021. "COVID-19 impact on firm investment—Evidence from Chinese publicly listed firms," Journal of Asian Economics, Elsevier, vol. 75(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costola, Michele & Iacopini, Matteo & Santagiustina, Carlo R.M.A., 2021. "Google search volumes and the financial markets during the COVID-19 outbreak," Finance Research Letters, Elsevier, vol. 42(C).
    2. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2024. "Capturing the timing of crisis evolution: A machine learning and directional wavelet coherence approach to isolating event-specific uncertainty using Google searches with an application to COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    3. Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024. "Search and Predictability of Prices in the Housing Market," Management Science, INFORMS, vol. 70(1), pages 415-438, January.
    4. Donadelli, Michael & Gerotto, Luca, 2019. "Non-macro-based Google searches, uncertainty, and real economic activity," Research in International Business and Finance, Elsevier, vol. 48(C), pages 111-142.
    5. Tamgac, Unay, 2021. "Emerging market exchange rates during quantitative tapering: The effect of US and domestic news," Research in International Business and Finance, Elsevier, vol. 57(C).
    6. Mehwish Aziz Khan & Eatzaz Ahmad, 2018. "Measurement of Investor Sentiment and Its Bi-Directional Contemporaneous and Lead–Lag Relationship with Returns: Evidence from Pakistan," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    7. Michele Costola & Michael Donadelli & Luca Gerotto & Ivan Gufler, 2022. "Global risks, the macroeconomy, and asset prices," Empirical Economics, Springer, vol. 63(5), pages 2357-2388, November.
    8. Daniel Borup & Erik Christian Montes Schütte, 2022. "In Search of a Job: Forecasting Employment Growth Using Google Trends," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
    9. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    10. V. D. Milovidov, 2024. "Investor Sentiment and Stock Market Dynamics: Ways to Forecast Stock Prices," Studies on Russian Economic Development, Springer, vol. 35(4), pages 518-529, August.
    11. Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
    12. Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    13. Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
    14. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia, 2023. "Do commodity markets catch a cold from stock markets? Modelling uncertainty spillovers using Google search trends and wavelet coherence," International Review of Financial Analysis, Elsevier, vol. 87(C).
    15. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
    16. Afees A. Salisu & Ahamuefula E. Ogbonna & Idris Adediran, 2021. "Stock‐induced Google trends and the predictability of sectoral stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 327-345, March.
    17. Miao, Miao & Khaskheli, Asadullah & Raza, Syed Ali & Yousufi, Sara Qamar, 2022. "Using internet search keyword data for predictability of precious metals prices: Evidence from non-parametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 75(C).
    18. Falik Shear & Badar Nadeem Ashraf & Mohsin Sadaqat, 2020. "Are Investors’ Attention and Uncertainty Aversion the Risk Factors for Stock Markets? International Evidence from the COVID-19 Crisis," Risks, MDPI, vol. 9(1), pages 1-15, December.
    19. Qadan, Mahmoud & Zoua’bi, Maher, 2019. "Financial attention and the demand for information," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 82(C).
    20. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.06796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.