IDEAS home Printed from https://ideas.repec.org/a/spr/sorede/v35y2024i4d10.1134_s1075700724700072.html
   My bibliography  Save this article

Investor Sentiment and Stock Market Dynamics: Ways to Forecast Stock Prices

Author

Listed:
  • V. D. Milovidov

    (Moscow State Institute of International Relations, Ministry of Foreign Affairs of Russia)

Abstract

— The article analyzes search queries in the Russian and American segments of Google. The author proposes a methodology for selecting and classifying search queries that reflect investor sentiment, which potentially influence the activity of the population in the financial market. The article calculates sentiment indices for the United States and Russia, demonstrating a high correlation with the national stock indices S&P500 and IMOEX. The author summarizes that financial market quotes can be determined as indicators of investor sentiment, which in turn are formed on the basis of a complex of economic and noneconomic factors.

Suggested Citation

  • V. D. Milovidov, 2024. "Investor Sentiment and Stock Market Dynamics: Ways to Forecast Stock Prices," Studies on Russian Economic Development, Springer, vol. 35(4), pages 518-529, August.
  • Handle: RePEc:spr:sorede:v:35:y:2024:i:4:d:10.1134_s1075700724700072
    DOI: 10.1134/S1075700724700072
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1134/S1075700724700072
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1134/S1075700724700072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castelnuovo, Efrem & Tran, Trung Duc, 2017. "Google It Up! A Google Trends-based Uncertainty index for the United States and Australia," Economics Letters, Elsevier, vol. 161(C), pages 149-153.
    2. Larry G. Epstein & Martin Schneider, 2008. "Ambiguity, Information Quality, and Asset Pricing," Journal of Finance, American Finance Association, vol. 63(1), pages 197-228, February.
    3. Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
    4. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    5. Michael Donadelli, 2015. "Google search-based metrics, policy-related uncertainty and macroeconomic conditions," Applied Economics Letters, Taylor & Francis Journals, vol. 22(10), pages 801-807, July.
    6. Francisca Beer & Fabrice Hervé & Mohamed Zouaoui, 2013. "Is Big Brother Watching Us? Google, Investor Sentiment and the Stock Market," Economics Bulletin, AccessEcon, vol. 33(1), pages 454-466.
    7. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    8. Wenwen Liu & Jinyu Yang & Jingrui Chen & Lei Xu, 2023. "How Social-Network Attention and Sentiment of Investors Affect Commodity Futures Market Returns: New Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
    9. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    10. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    11. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    12. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    13. Daniel Andrei & Michael Hasler, 2015. "Investor Attention and Stock Market Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 33-72.
    14. Fang, Jianchun & Gozgor, Giray & Lau, Chi-Keung Marco & Lu, Zhou, 2020. "The impact of Baidu Index sentiment on the volatility of China's stock markets," Finance Research Letters, Elsevier, vol. 32(C).
    15. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    16. Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
    17. Vladimir Dmitrievich Milovidov, 2023. "Redefining investors' goals in the post–normal world," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 24(3), pages 371-385, March.
    18. Christopher A. Sims, 2006. "Rational Inattention: Beyond the Linear-Quadratic Case," American Economic Review, American Economic Association, vol. 96(2), pages 158-163, May.
    19. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    2. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia, 2023. "Do commodity markets catch a cold from stock markets? Modelling uncertainty spillovers using Google search trends and wavelet coherence," International Review of Financial Analysis, Elsevier, vol. 87(C).
    3. Tamgac, Unay, 2021. "Emerging market exchange rates during quantitative tapering: The effect of US and domestic news," Research in International Business and Finance, Elsevier, vol. 57(C).
    4. Costola, Michele & Iacopini, Matteo & Santagiustina, Carlo R.M.A., 2021. "Google search volumes and the financial markets during the COVID-19 outbreak," Finance Research Letters, Elsevier, vol. 42(C).
    5. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2024. "Capturing the timing of crisis evolution: A machine learning and directional wavelet coherence approach to isolating event-specific uncertainty using Google searches with an application to COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    6. Cai, Wenwu & Lu, Jing, 2019. "Investors’ financial attention frequency and trading activity," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    7. Chen, Zhongdong & Craig, Karen Ann, 2023. "Active attention, retail investor base, and stock returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    8. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    9. Ung, Sze Nie & Gebka, Bartosz & Anderson, Robert D.J., 2023. "Is sentiment the solution to the risk–return puzzle? A (cautionary) note," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    10. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    11. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    12. Papadamou, Stephanos & Fassas, Athanasios P. & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2023. "Effects of the first wave of COVID-19 pandemic on implied stock market volatility: International evidence using a google trend measure," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    13. Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024. "Search and Predictability of Prices in the Housing Market," Management Science, INFORMS, vol. 70(1), pages 415-438, January.
    14. Donadelli, Michael & Gerotto, Luca, 2019. "Non-macro-based Google searches, uncertainty, and real economic activity," Research in International Business and Finance, Elsevier, vol. 48(C), pages 111-142.
    15. Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
    16. Dong, Dayong & Wu, Keke & Fang, Jianchun & Gozgor, Giray & Yan, Cheng, 2022. "Investor attention factors and stock returns: Evidence from China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    17. de Castro, Jessica & Piccoli, Pedro, 2023. "Do online searches actually measure future retail investor trades?," International Review of Financial Analysis, Elsevier, vol. 86(C).
    18. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    19. Mehwish Aziz Khan & Eatzaz Ahmad, 2018. "Measurement of Investor Sentiment and Its Bi-Directional Contemporaneous and Lead–Lag Relationship with Returns: Evidence from Pakistan," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    20. Lyócsa, Štefan & Halousková, Martina & Haugom, Erik, 2023. "The US banking crisis in 2023: Intraday attention and price variation of banks at risk," Finance Research Letters, Elsevier, vol. 57(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sorede:v:35:y:2024:i:4:d:10.1134_s1075700724700072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.