IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.07827.html
   My bibliography  Save this paper

COVID-19: $R_0$ is lower where outbreak is larger

Author

Listed:
  • Pietro Battiston
  • Simona Gamba

Abstract

We use daily data from Lombardy, the Italian region most affected by the COVID-19 outbreak, to calibrate a SIR model individually on each municipality. These are all covered by the same health system and, in the post-lockdown phase we focus on, all subject to the same social distancing regulations. We find that municipalities with a higher number of cases at the beginning of the period analyzed have a lower rate of diffusion, which cannot be imputed to herd immunity. In particular, there is a robust and strongly significant negative correlation between the estimated basic reproduction number ($R_0$) and the initial outbreak size, in contrast with the role of $R_0$ as a \emph{predictor} of outbreak size. We explore different possible explanations for this phenomenon and conclude that a higher number of cases causes changes of behavior, such as a more strict adoption of social distancing measures among the population, that reduce the spread. This result calls for a transparent, real-time distribution of detailed epidemiological data, as such data affects the behavior of populations in areas affected by the outbreak.

Suggested Citation

  • Pietro Battiston & Simona Gamba, 2020. "COVID-19: $R_0$ is lower where outbreak is larger," Papers 2004.07827, arXiv.org.
  • Handle: RePEc:arx:papers:2004.07827
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.07827
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael Greenstone & Vishan Nigam, 2020. "Does Social Distancing Matter?," Working Papers 2020-26, Becker Friedman Institute for Research In Economics.
    2. Richard A. Kronmal, 1993. "Spurious Correlation and the Fallacy of the Ratio Standard Revisited," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 156(3), pages 379-392, May.
    3. Andrew Atkeson, 2020. "How Deadly is COVID-19? Understanding the Difficulties with Estimation of its Fatality Rate," Staff Report 598, Federal Reserve Bank of Minneapolis.
    4. Callum Jones & Thomas Philippon & Venky Venkateswaran, 2021. "Optimal Mitigation Policies in a Pandemic: Social Distancing and Working from Home [A simple planning problem for covid-19 lockdown]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5188-5223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Chudik & M. Hashem Pesaran & Alessandro Rebucci, 2023. "Social Distancing, Vaccination and Evolution of COVID-19 Transmission Rates in Europe," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 474-508, June.
    2. Alexander Chudik & M. Hashem Pesaran & Alessandro Rebucci, 2021. "COVID-19 Time-Varying Reproduction Numbers Worldwide: An Empirical Analysis of Mandatory and Voluntary Social Distancing," Globalization Institute Working Papers 407, Federal Reserve Bank of Dallas.
    3. Celidoni, Martina & Costa-Font, Joan & Salmasi, Luca, 2023. "Mobility restrictions and alcohol use during lockdown: “A still and dry pandemic for the many”?," Economics & Human Biology, Elsevier, vol. 50(C).
    4. Wim Naudé & Ricardo Vinuesa, 2020. "Data, global development, and COVID-19: Lessons and consequences," WIDER Working Paper Series wp-2020-109, World Institute for Development Economic Research (UNU-WIDER).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battiston, Pietro & Gamba, Simona, 2021. "COVID-19: R0 is lower where outbreak is larger," Health Policy, Elsevier, vol. 125(2), pages 141-147.
    2. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    3. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    4. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    5. Dirk Niepelt & Mart n Gonzalez-Eiras, 2020. "Optimally Controlling an Epidemic," Diskussionsschriften dp2019, Universitaet Bern, Departement Volkswirtschaft.
    6. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    7. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    8. Jean-Noël Barrot & Basile Grassi & Julien Sauvagnat, 2020. "Estimating the Costs and Benefits of Mandated Business Closures in a Pandemic," Working Papers hal-02896739, HAL.
    9. Robert S. Pindyck, 2020. "COVID-19 and the Welfare Effects of Reducing Contagion," NBER Working Papers 27121, National Bureau of Economic Research, Inc.
    10. Glenn Ellison, 2020. "Implications of Heterogeneous SIR Models for Analyses of COVID-19," NBER Working Papers 27373, National Bureau of Economic Research, Inc.
    11. Timo Boppart & Karl Harmenberg & John Hassler & Per Krusell & Jonna Olsson, 2020. "Integrated Epi-Econ Assessment," NBER Working Papers 28282, National Bureau of Economic Research, Inc.
    12. Getachew, Yoseph, 2020. "Optimal social distancing in SIR based macroeconomic models," MERIT Working Papers 2020-034, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    13. Croce, Mariano & Farroni, Paolo & Wolfskeil, Isabella, 2020. "When the Markets Get COVID: COntagion, Viruses, and Information Diffusion," CEPR Discussion Papers 14674, C.E.P.R. Discussion Papers.
    14. Yinon Bar-On & Tatiana Baron & Ofer Cornfeld & Eran Yashiv, 2023. "When to Lock, Not Whom: Managing Epidemics Using Time-Based Restrictions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 292-321, December.
    15. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    16. Durante, Ruben & Guiso, Luigi & Gulino, Giorgio, 2021. "Asocial capital: Civic culture and social distancing during COVID-19," Journal of Public Economics, Elsevier, vol. 194(C).
    17. Garriga, Carlos & Manuelli, Rody & Sanghi, Siddhartha, 2022. "Optimal management of an epidemic: Lockdown, vaccine and value of life," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    18. Yinon Bar-On & Tatiana Baron & Ofer Cornfeld & Eran Yashiv, 2023. "When to Lock, Not Whom: Managing Epidemics Using Time-Based Restrictions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 292-321, December.
    19. Çakmaklı, Cem & Demiralp, Selva & Özcan, Şebnem Kalemli & Yeşiltaş, Sevcan & Yıldırım, Muhammed A., 2023. "COVID-19 and emerging markets: A SIR model, demand shocks and capital flows," Journal of International Economics, Elsevier, vol. 145(C).
    20. Peter T. Leeson & Louis Rouanet, 2021. "Externality and COVID‐19," Southern Economic Journal, John Wiley & Sons, vol. 87(4), pages 1107-1118, April.

    More about this item

    JEL classification:

    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.07827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.