IDEAS home Printed from https://ideas.repec.org/p/mib/wpaper/438.html
   My bibliography  Save this paper

COVID-19: R0 is lower where outbreak is larger

Author

Listed:
  • Pietro Battiston
  • Simona Gamba

Abstract

We use daily data from Lombardy, the Italian region most affected by the COVID-19 outbreak, to calibrate a SIR model individually on each municipality. These are all covered by the same health system and, in the post-lockdown phase we focus on, all subject to the same social distancing regulations. We find that municipalities with a higher number of cases at the beginning of the period analyzed have a lower rate of diffusion, which cannot be imputed to herd immunity. In particular, there is a robust and strongly significant negative correlation between the estimated basic reproduction number (R0) and the initial outbreak size, in contrast with the role of R0 as a predictor of outbreak size. We explore different possible explanations for this phenomenon and conclude that a higher number of cases causes changes of behavior, such as a more strict adoption of social distancing measures among the population, that reduce the spread. This result calls for a transparent, real-time distribution of detailed epidemiological data, as such data affects the behavior of populations in areas affected by the outbreak.

Suggested Citation

  • Pietro Battiston & Simona Gamba, 2020. "COVID-19: R0 is lower where outbreak is larger," Working Papers 438, University of Milano-Bicocca, Department of Economics, revised Apr 2020.
  • Handle: RePEc:mib:wpaper:438
    as

    Download full text from publisher

    File URL: http://repec.dems.unimib.it/repec/pdf/mibwpaper438.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rebucci, Alessandro & Chudik, Alexander & Pesaran, M. Hashem, 2020. "Voluntary and Mandatory Social Distancing: Evidence on COVID-19 Exposure Rates from Chinese Provinces and Selected Countries," CEPR Discussion Papers 14646, C.E.P.R. Discussion Papers.
    2. Oster, Emily, 2012. "HIV and sexual behavior change: Why not Africa?," Journal of Health Economics, Elsevier, vol. 31(1), pages 35-49.
    3. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    4. Philipson, Tomas, 2000. "Economic epidemiology and infectious diseases," Handbook of Health Economics, in: A. J. Culyer & J. P. Newhouse (ed.), Handbook of Health Economics, edition 1, volume 1, chapter 33, pages 1761-1799, Elsevier.
    5. Richard A. Kronmal, 1993. "Spurious Correlation and the Fallacy of the Ratio Standard Revisited," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 156(3), pages 379-392, May.
    6. Lewis, Jeffrey B. & Linzer, Drew A., 2005. "Estimating Regression Models in Which the Dependent Variable Is Based on Estimates," Political Analysis, Cambridge University Press, vol. 13(4), pages 345-364.
    7. Andrew Atkeson, 2020. "How Deadly is COVID-19? Understanding the Difficulties with Estimation of its Fatality Rate," Staff Report 598, Federal Reserve Bank of Minneapolis.
    8. John Mullahy, 1999. "It'll only hurt a second? Microeconomic determinants of who gets flu shots," Health Economics, John Wiley & Sons, Ltd., vol. 8(1), pages 9-24, February.
    9. Tomas Philipson, 1996. "Private Vaccination and Public Health: An Empirical Examination for U.S. Measles," Journal of Human Resources, University of Wisconsin Press, vol. 31(3), pages 611-630.
    10. Avner Ahituv & V. Joseph Hotz & Tomas Philipson, 1996. "The Responsiveness of the Demand for Condoms to the Local Prevalence of AIDS," Journal of Human Resources, University of Wisconsin Press, vol. 31(4), pages 869-897.
    11. Michael Greenstone & Vishan Nigam, 2020. "Does Social Distancing Matter?," Working Papers 2020-26, Becker Friedman Institute for Research In Economics.
    12. Jennifer Beam Dowd & Liliana Andriano & David M. Brazel & Valentina Rotondi & Per Block & Xuejie Ding & Yan Liu & Melinda C. Mills, 2020. "Demographic science aids in understanding the spread and fatality rates of COVID-19," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(18), pages 9696-9698, May.
    13. Geoffard, Pierre-Yves & Philipson, Tomas, 1996. "Rational Epidemics and Their Public Control," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(3), pages 603-624, August.
    14. Callum Jones & Thomas Philippon & Venky Venkateswaran, 2021. "Optimal Mitigation Policies in a Pandemic: Social Distancing and Working from Home [A simple planning problem for covid-19 lockdown]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5188-5223.
    15. Sabat, Iryna & Neuman-Böhme, Sebastian & Varghese, Nirosha Elsem & Barros, Pedro Pita & Brouwer, Werner & van Exel, Job & Schreyögg, Jonas & Stargardt, Tom, 2020. "United but divided: Policy responses and people’s perceptions in the EU during the COVID-19 outbreak," Health Policy, Elsevier, vol. 124(9), pages 909-918.
    16. Fenichel, Eli P., 2013. "Economic considerations for social distancing and behavioral based policies during an epidemic," Journal of Health Economics, Elsevier, vol. 32(2), pages 440-451.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Klumpp & Dominic Loske & Silvio Bicciato, 2022. "COVID-19 health policy evaluation: integrating health and economic perspectives with a data envelopment analysis approach," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(8), pages 1263-1285, November.
    2. Alexander Chudik & M. Hashem Pesaran & Alessandro Rebucci, 2023. "Social Distancing, Vaccination and Evolution of COVID-19 Transmission Rates in Europe," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 474-508, June.
    3. Martin-Lapoirie, Dylan & McColl, Kathleen & Gallopel-Morvan, Karine & Arwidson, Pierre & Raude, Jocelyn, 2024. "Health protective behaviours during the COVID-19 pandemic: Risk adaptation or habituation?," Social Science & Medicine, Elsevier, vol. 342(C).
    4. Alexander Chudik & M. Hashem Pesaran & Alessandro Rebucci, 2021. "COVID-19 Time-Varying Reproduction Numbers Worldwide: An Empirical Analysis of Mandatory and Voluntary Social Distancing," Globalization Institute Working Papers 407, Federal Reserve Bank of Dallas.
    5. Wim Naudé & Ricardo Vinuesa, 2020. "Data, global development, and COVID-19: Lessons and consequences," WIDER Working Paper Series wp-2020-109, World Institute for Development Economic Research (UNU-WIDER).
    6. Celidoni, Martina & Costa-Font, Joan & Salmasi, Luca, 2023. "Mobility restrictions and alcohol use during lockdown: “A still and dry pandemic for the many”?," Economics & Human Biology, Elsevier, vol. 50(C).
    7. Muhammad Fayyaz Nazir & Shahzadah Fahed Qureshi, 2023. "Applying Structural Equation Modelling to Understand the Implementation of Social Distancing in the Professional Lives of Healthcare Workers," IJERPH, MDPI, vol. 20(5), pages 1-32, March.
    8. P. Battiston & M. Menegatti, 2022. "Interaction in Prevention: A General Theory and an Application to COVID-19 Pandemic," Economics Department Working Papers 2022-EP02, Department of Economics, Parma University (Italy).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    2. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    3. Celidoni, Martina & Costa-Font, Joan & Salmasi, Luca, 2023. "Mobility restrictions and alcohol use during lockdown: “A still and dry pandemic for the many”?," Economics & Human Biology, Elsevier, vol. 50(C).
    4. Yinon Bar-On & Tatiana Baron & Ofer Cornfeld & Eran Yashiv, 2023. "When to Lock, Not Whom: Managing Epidemics Using Time-Based Restrictions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 292-321, December.
    5. Martin F. Quaas & Jasper N. Meya & Hanna Schenk & Björn Bos & Moritz A. Drupp & Till Requate, 2020. "The Social Cost of Contacts: Theory and Evidence for the Covid-19 Pandemic in Germany," CESifo Working Paper Series 8347, CESifo.
    6. Sarkar, Jayanta, 2022. "Do disease prevalence and severity drive COVID-19 vaccine demand?," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 310-319.
    7. Daron Acemoglu & Victor Chernozhukov & Ivàn Werning & Michael D. Whinston, 2020. "A Multi-Risk SIR Model with Optimally Targeted Lockdown," CeMMAP working papers CWP14/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Matthew Neidell, 2009. "Information, Avoidance Behavior, and Health: The Effect of Ozone on Asthma Hospitalizations," Journal of Human Resources, University of Wisconsin Press, vol. 44(2).
    9. Yinon Bar-On & Tatiana Baron & Ofer Cornfeld & Eran Yashiv, 2023. "When to Lock, Not Whom: Managing Epidemics Using Time-Based Restrictions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 292-321, December.
    10. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    11. Yinon Bar-On & Tatiana Baron & Ofer Cornfeld & Eran Yashiv, 2023. "When to Lock, Not Whom: Managing Epidemics Using Time-Based Restrictions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 292-321, December.
    12. Gabriel Picone & Robyn Kibler & Benedicte Apouey, 2013. "Individuals� Preventive Behavioral Response to Changes in Malaria Risks and Government Interventions: Evidence from six African countries," Working Papers 0313, University of South Florida, Department of Economics.
    13. Tommy Andersson & Albin Erlanson & Daniel Spiro & Robert Ostling, 2020. "Optimal Trade-Off Between Economic Activity and Health During an Epidemic," Papers 2005.07590, arXiv.org.
    14. Auld, M. Christopher, 2003. "Choices, beliefs, and infectious disease dynamics," Journal of Health Economics, Elsevier, vol. 22(3), pages 361-377, May.
    15. Joshua S. Gans, 2020. "The Economic Consequences of R̂ = 1: Towards a Workable Behavioural Epidemiological Model of Pandemics," NBER Working Papers 27632, National Bureau of Economic Research, Inc.
    16. Baril-Tremblay, Dominique & Marlats, Chantal & Ménager, Lucie, 2021. "Self-isolation," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    17. Marlène Guillon & Josselin Thuilliez, 2015. "HIV and Rational risky behaviors: a systematic review of published empirical literature (1990-2013)," Documents de travail du Centre d'Economie de la Sorbonne 15065, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. repec:hal:wpaper:halshs-01222571 is not listed on IDEAS
    19. Martin F Quaas & Jasper N Meya & Hanna Schenk & Björn Bos & Moritz A Drupp & Till Requate, 2021. "The social cost of contacts: Theory and evidence for the first wave of the COVID-19 pandemic in Germany," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-29, March.
    20. Giagheddu, Marta & Papetti, Andrea, 2023. "The macroeconomics of age-varying epidemics," European Economic Review, Elsevier, vol. 151(C).
    21. Goodkin-Gold, Matthew & Kremer, Michael & Snyder, Christopher M. & Williams, Heidi, 2022. "Optimal vaccine subsidies for endemic diseases," International Journal of Industrial Organization, Elsevier, vol. 84(C).

    More about this item

    Keywords

    COVID-19; tests; basic reproduction number; social distancing; containment.;
    All these keywords.

    JEL classification:

    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mib:wpaper:438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matteo Pelagatti (email available below). General contact details of provider: https://edirc.repec.org/data/dpmibit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.