IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00919895.html
   My bibliography  Save this paper

Multivariate transient price impact and matrix-valued positive definite functions

Author

Listed:
  • Aurélien Alfonsi

    (CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École des Ponts ParisTech, MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École des Ponts ParisTech - Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique)

  • Alexander Schied

    (Department of Mathematics and Computer Science [Mannheim] - Universität Mannheim)

  • Florian Klöck

    (Department of Mathematics and Computer Science [Mannheim] - Universität Mannheim)

Abstract

We consider a model for linear transient price impact for multiple assets that takes cross-asset impact into account. Our main goal is to single out properties that need to be imposed on the decay kernel so that the model admits well-behaved optimal trade execution strategies. We first show that the existence of such strategies is guaranteed by assuming that the decay kernel corresponds to a matrix-valued positive definite function. An example illustrates, however, that positive definiteness alone does not guarantee that optimal strategies are well-behaved. Building on previous results from the one-dimensional case, we investigate a class of nonincreasing, nonnegative and convex decay kernels with values in the symmetric $K\times K$ matrices. We show that these decay kernels are always positive definite and characterize when they are even strictly positive definite, a result that may be of independent interest. Optimal strategies for kernels from this class are well-behaved when one requires that the decay kernel is also commuting. We show how such decay kernels can be constructed by means of matrix functions and provide a number of examples. In particular we completely solve the case of matrix exponential decay.

Suggested Citation

  • Aurélien Alfonsi & Alexander Schied & Florian Klöck, 2016. "Multivariate transient price impact and matrix-valued positive definite functions," Post-Print hal-00919895, HAL.
  • Handle: RePEc:hal:journl:hal-00919895
    DOI: 10.1287/moor.2015.0761
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2022. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Post-Print hal-02567489, HAL.
    2. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Papers 2004.01624, arXiv.org, revised Mar 2022.
    3. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2021. "Cross impact in derivative markets," Working Papers hal-03378903, HAL.
    4. L. C. Garcia Del Molino & I. Mastromatteo & Michael Benzaquen & J.-P. Bouchaud, 2019. "The Multivariate Kyle model: More is different," Working Papers hal-02323433, HAL.
    5. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2021. "Cross impact in derivative markets," Papers 2102.02834, arXiv.org, revised Mar 2022.
    6. Luis Carlos Garc'ia del Molino & Iacopo Mastromatteo & Michael Benzaquen & Jean-Philippe Bouchaud, 2018. "The Multivariate Kyle model: More is different," Papers 1806.07791, arXiv.org, revised Dec 2018.
    7. Ulrich Horst & Xiaonyu Xia, 2019. "Multi-dimensional optimal trade execution under stochastic resilience," Finance and Stochastics, Springer, vol. 23(4), pages 889-923, October.
    8. Mathieu Rosenbaum & Mehdi Tomas, 2021. "A characterisation of cross-impact kernels," Papers 2107.08684, arXiv.org.
    9. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Working Papers hal-02567489, HAL.
    10. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2022. "Cross impact in derivative markets," Post-Print hal-03378903, HAL.
    11. L. C. Garcia Del Molino & I. Mastromatteo & Michael Benzaquen & J.-P. Bouchaud, 2020. "The Multivariate Kyle model: More is different," Post-Print hal-02323433, HAL.
    12. Masamitsu Ohnishi & Makoto Shimoshimizu, 2022. "Optimal Pair–Trade Execution with Generalized Cross–Impact," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(2), pages 253-289, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00919895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.