IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.07389.html
   My bibliography  Save this paper

Quantum Implementation of Risk Analysis-relevant Copulas

Author

Listed:
  • Janusz Milek

Abstract

Modern quantitative risk management relies on an adequate modeling of the tail dependence and a possibly accurate quantification of risk measures, like Value at Risk (VaR), at high confidence levels like 1 in 100 or even 1 in 2000. Quantum computing makes such a quantification quadratically more efficient than the Monte Carlo method; see (Woerner and Egger, 2018) and, for a broader perspective, (Or\'us et al., 2018). An important element of the risk analysis toolbox is copula, see (Jouanin et al., 2004) regarding financial applications. However, to the best knowledge of the author, no quantum computing implementation for sampling from a risk modeling-relevant copula in explicit form has been published so far. Our focus here is implementation of simple yet powerful copula models, capable of a satisfactory capturing the joint tail behaviour of the modelled risk factors. This paper deals with a few simple copula families, including Multivariate B11 (MB11) copula family, presented in (Milek, 2014). We will show that this copula family is suitable for the risk aggregation as it is exceptionally able to reproduce tail dependence structures; see (Embrechts et al., 2016) for a relevant benchmark as well as necessary and sufficient conditions regarding the ultimate feasible bivariate tail dependence structures. It turns out that such a discretized copula can be expressed using simple constructs present in the quantum computing: binary fraction expansion format, comonotone/independent random variables, controlled gates, and convex combinations, and is therefore suitable for a quantum computer implementation. This paper presents design behind the quantum implementation circuits, numerical and symbolic simulation results, and experimental validation on IBM quantum computer. The paper proposes also a generic method for quantum implementation of any discretized copula.

Suggested Citation

  • Janusz Milek, 2020. "Quantum Implementation of Risk Analysis-relevant Copulas," Papers 2002.07389, arXiv.org, revised Mar 2020.
  • Handle: RePEc:arx:papers:2002.07389
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.07389
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    2. Yang, Jingping & Qi, Yongcheng & Wang, Ruodu, 2009. "A class of multivariate copulas with bivariate Frechet marginal copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 139-147, August.
    3. Krause, Daniel & Scherer, Matthias & Schwinn, Jonas & Werner, Ralf, 2018. "Membership testing for Bernoulli and tail-dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 240-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirbod Assa & Liyuan Lin & Ruodu Wang, 2022. "Calibrating distribution models from PELVE," Papers 2204.08882, arXiv.org, revised Jun 2023.
    2. Shyamalkumar, Nariankadu D. & Tao, Siyang, 2022. "t-copula from the viewpoint of tail dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    3. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    4. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    5. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    6. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    7. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    8. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    9. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    10. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
    11. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    12. Battulga Gankhuu, 2022. "Merton's Default Risk Model for Private Company," Papers 2208.01974, arXiv.org.
    13. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    14. Stephan Schlüter & Fabian Menz & Milena Kojić & Petar Mitić & Aida Hanić, 2022. "A Novel Approach to Generate Hourly Photovoltaic Power Scenarios," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    15. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
    16. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.
    17. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    18. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
    19. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    20. Xuehai Zhang, 2019. "Value at Risk and Expected Shortfall under General Semi-parametric GARCH models," Working Papers CIE 123, Paderborn University, CIE Center for International Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.07389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.