IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.05784.html
   My bibliography  Save this paper

Improving S&P stock prediction with time series stock similarity

Author

Listed:
  • Lior Sidi

Abstract

Stock market prediction with forecasting algorithms is a popular topic these days where most of the forecasting algorithms train only on data collected on a particular stock. In this paper, we enriched the stock data with related stocks just as a professional trader would have done to improve the stock prediction models. We tested five different similarities functions and found co-integration similarity to have the best improvement on the prediction model. We evaluate the models on seven S&P stocks from various industries over five years period. The prediction model we trained on similar stocks had significantly better results with 0.55 mean accuracy, and 19.782 profit compare to the state of the art model with an accuracy of 0.52 and profit of 6.6.

Suggested Citation

  • Lior Sidi, 2020. "Improving S&P stock prediction with time series stock similarity," Papers 2002.05784, arXiv.org.
  • Handle: RePEc:arx:papers:2002.05784
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.05784
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    2. Caiado, Jorge & Crato, Nuno, 2007. "A GARCH-based method for clustering of financial time series: International stock markets evidence," MPRA Paper 2074, University Library of Munich, Germany.
    3. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatsuru Kikuchi & Toranosuke Onishi & Kenichi Ueda, 2021. "Price Stability of Cryptocurrencies as a Medium of Exchange," CARF F-Series CARF-F-526, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Erie Febrian & Aldrin Herwany, 2009. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Economics and Development Studies (WoPEDS) 200911, Department of Economics, Padjadjaran University, revised Sep 2009.
    3. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    4. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    5. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    6. Franses, Ph.H.B.F., 2019. "Do African economies grow similarly?," Econometric Institute Research Papers EI2019-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    8. Rigana, Katerina & Wit, Ernst-Jan Camiel & Cook, Samantha, 2023. "A new way of measuring effects of financial crisis on contagion in currency markets," International Review of Financial Analysis, Elsevier, vol. 90(C).
    9. Aleksandra Rutkowska & Magdalena Szyszko, 2022. "New DTW Windows Type for Forward- and Backward-Lookingness Examination. Application for Inflation Expectation," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 701-718, February.
    10. Katerina Rigana & Ernst-Jan Camiel Wit & Samantha Cook, 2021. "Using Network-based Causal Inference to Detect the Sources of Contagion in the Currency Market," Papers 2112.13127, arXiv.org.
    11. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    12. Xin Yang & Shigang Wen & Zhifeng Liu & Cai Li & Chuangxia Huang, 2019. "Dynamic Properties of Foreign Exchange Complex Network," Mathematics, MDPI, vol. 7(9), pages 1-19, September.
    13. Oussama Tilfani & Paulo Ferreira & Andreia Dionisio & My Youssef El Boukfaoui, 2020. "EU Stock Markets vs. Germany, UK and US: Analysis of Dynamic Comovements Using Time-Varying DCCA Correlation Coefficients," JRFM, MDPI, vol. 13(5), pages 1-23, May.
    14. Krishna M. Kasibhatla & David Stewart & Swapan Sen & John Malindretos, 2006. "Are Daily Stock Price Indices in the Major European Equity Markets Cointegrated? Tests and Evidence," The American Economist, Sage Publications, vol. 50(2), pages 47-57, October.
    15. Wang, Dan & Huang, Wei-Qiang, 2021. "Centrality-based measures of financial institutions’ systemic importance: A tail dependence network view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    16. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    17. Kalyagin, V.A. & Koldanov, A.P. & Koldanov, P.A., 2022. "Reliability of maximum spanning tree identification in correlation-based market networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    18. Zhu, Xiaoqian & Xie, Yongjia & Li, Jianping & Wu, Dengsheng, 2015. "Change point detection for subprime crisis in American banking: From the perspective of risk dependence," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 18-28.
    19. Xie Chi & Zhou Yingying & Wang Gangjin & Yan Xinguo, 2017. "Investigating the Disparities of China’s Insurance Market Based on Minimum Spanning Tree from the Viewpoint of Geography and Enterprise," Journal of Systems Science and Information, De Gruyter, vol. 5(3), pages 216-228, June.
    20. Luca De Angelis, 2013. "Latent class models for financial data analysis: some statistical developments," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 227-242, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.05784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.