IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.04804.html
   My bibliography  Save this paper

Nonparametric Adaptive Bayesian Stochastic Control Under Model Uncertainty

Author

Listed:
  • Tao Chen
  • Jiyoun Myung

Abstract

In this paper we propose a new methodology for solving a discrete time stochastic Markovian control problem under model uncertainty. By utilizing the Dirichlet process, we model the unknown distribution of the underlying stochastic process as a random probability measure and achieve online learning in a Bayesian manner. Our approach integrates optimizing and dynamic learning. When dealing with model uncertainty, the nonparametric framework allows us to avoid model misspecification that usually occurs in other classical control methods. Then, we develop a numerical algorithm to handle the infinitely dimensional state space in this setup and utilizes Gaussian process surrogates to obtain a functional representation of the value function in the Bellman recursion. We also build separate surrogates for optimal control to eliminate repeated optimizations on out-of-sample paths and bring computational speed-ups. Finally, we demonstrate the financial advantages of the nonparametric Bayesian framework compared to parametric approaches such as strong robust and time consistent adaptive.

Suggested Citation

  • Tao Chen & Jiyoun Myung, 2020. "Nonparametric Adaptive Bayesian Stochastic Control Under Model Uncertainty," Papers 2011.04804, arXiv.org, revised Mar 2022.
  • Handle: RePEc:arx:papers:2011.04804
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.04804
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Misspecification," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 6, pages 155-216, World Scientific Publishing Co. Pte. Ltd..
    2. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    3. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    4. Tomasz R. Bielecki & Tao Chen & Igor Cialenco, 2020. "Time-inconsistent Markovian control problems under model uncertainty with application to the mean-variance portfolio selection," Papers 2002.02604, arXiv.org, revised Sep 2020.
    5. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    6. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    7. Erhan Bayraktar & Yuchong Zhang, 2016. "Fundamental Theorem of Asset Pricing Under Transaction Costs and Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1039-1054, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Tao Chen, 2022. "Nonparametric Adaptive Robust Control Under Model Uncertainty," Papers 2202.10391, arXiv.org, revised Mar 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Beissner, 2019. "Coherent-Price Systems and Uncertainty-Neutral Valuation," Risks, MDPI, vol. 7(3), pages 1-18, September.
    2. Marcel Nutz, 2013. "Utility Maximization under Model Uncertainty in Discrete Time," Papers 1307.3597, arXiv.org.
    3. Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.
    4. Jang, Bong-Gyu & Park, Seyoung, 2016. "Ambiguity and optimal portfolio choice with Value-at-Risk constraint," Finance Research Letters, Elsevier, vol. 18(C), pages 158-176.
    5. Jan Obłój & Johannes Wiesel, 2021. "Distributionally robust portfolio maximization and marginal utility pricing in one period financial markets," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1454-1493, October.
    6. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.
    7. Chang-Chih Chen & Chia-Chien Chang, 2019. "How Big are the Ambiguity-Based Premiums on Mortgage Insurances?," The Journal of Real Estate Finance and Economics, Springer, vol. 58(1), pages 133-157, January.
    8. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2017. "Hedging with small uncertainty aversion," Finance and Stochastics, Springer, vol. 21(1), pages 1-64, January.
    9. Ban, Mingyuan & Chen, Chang-Chih, 2019. "Ambiguity and capital structure adjustments," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 242-270.
    10. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    11. Schied, Alexander, 2014. "Model-free CPPI," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 84-94.
    12. Dirk Becherer & Klebert Kentia, 2017. "Hedging under generalized good-deal bounds and model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 171-214, August.
    13. Junichi Imai, 2022. "A Numerical Method for Hedging Bermudan Options under Model Uncertainty," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 893-916, June.
    14. Jonathan Li & Roy Kwon, 2013. "Portfolio selection under model uncertainty: a penalized moment-based optimization approach," Journal of Global Optimization, Springer, vol. 56(1), pages 131-164, May.
    15. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    16. Alexander Schied, 2013. "Model-free CPPI," Papers 1305.5915, arXiv.org, revised Jan 2014.
    17. Kasper Larsen, 2009. "Continuity Of Utility‐Maximization With Respect To Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 237-250, April.
    18. M. Trojanowska & P. M. Kort, 2010. "The Worst Case for Real Options," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 709-734, September.
    19. Pauline Barrieu & Bernard Sinclair-Desgagné, 2009. "Economic Policy when Models Disagree," CIRANO Working Papers 2009s-03, CIRANO.
    20. Dirk Becherer & Klebert Kentia, 2016. "Hedging under generalized good-deal bounds and model uncertainty," Papers 1607.04488, arXiv.org, revised Apr 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.04804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.